Smart nanocarriers for drug delivery: controllable LSPR tuning

Abstract

Gold nanostructures are considered as a potential platform for building smart nanocarriers that will form the basis of novel methods of targeted delivery and controlled release of drugs. However, to ensure maximum efficiency of gold nanoparticles upon the drug release via the plasmon-enhanced photothermal effect, it is necessary to optimize their spectral parameters for operation in the human body that requires both theoretical research and development of appropriate methods for nanostructures fabrication. In this work, mathematical modeling of light extinction spectral dependences for gold nanostructures of different morphology was performed to determine their geometric parameters that provide the occurrence of localized surface plasmon resonance (LSPR) in the red and near infrared regions of the spectrum, where the transparency window of biological tissues exists. Based on the results of previous studies and computer modeling, using hollow gold nanoshells to construct smart nanocarriers was found to be most reasonable. A protocol for production of these nanoparticles based on “silver-gold” galvanic replacement reaction, which is accompanied by a controlled shift of the LSPR wavelength position, was proposed and described in detail. It is shown that the loading of model biomolecules in hollow gold nanoshells significantly changes the output optical parameters of the system under investigation, which should be taken into account for matching with the laser excitation wavelength during the development of smart nanocarriers.

Authors and Affiliations

A. M. Lopatynskyi, V. K. Lytvyn, I. V. Mogylnyi, O. E. Rachkov, O. P. Soldatkin, V. I. Chegel

Keywords

Related Articles

High-frequency electromagnetic radiation of germanium crystals in magnetic fields

The cyclotron radiation of plasma of thermal carriers of germanium crystals, which is not in the state of thermodynamic equilibrium with semiconductor, has been experimentally confirmed.

Peculiarities of near-electrode relaxation processes in the polyethylene melt filled with graphite and carbon black

By using the oscilloscope method within the frequency range 10 to 106 Hz at the temperature 492.1 K and pressure 11.31 MPa at the output of the single-screw extruder, the dielectric properties of the composite melt – lin...

Analysis of the silicon solar cells efficiency. Type of doping and level optimization

The theoretical analysis of photovoltaic conversion efficiency of highly effective silicon solar cells (SC) has been performed for n-type and p-type bases. Considered here is the case when the Shockley–Read–Hall recombin...

Using nanosphere lithography for fabrication of a multilayered system of ordered gold nanoparticles

New modification of nanosphere lithography has been realized to obtain multilayered systems of ordered gold nanopartciles (NP). NP have been formed using vacuum deposition of 5…60-nm layer of gold on ionic etched multila...

Trap-assisted conductivity in anodic oxide on InSb

The direct current conductivity of anodic oxide of InSb has been investigated as a function of applied bias and temperature. Proposed in this work is a model of conductivity that includes ohmic, trap-assisted tunneling a...

Download PDF file
  • EP ID EP178428
  • DOI 10.15407/spqeo19.04.358
  • Views 65
  • Downloads 0

How To Cite

A. M. Lopatynskyi, V. K. Lytvyn, I. V. Mogylnyi, O. E. Rachkov, O. P. Soldatkin, V. I. Chegel (2016). Smart nanocarriers for drug delivery: controllable LSPR tuning. Semiconductor Physics, Quantum Electronics and Optoelectronics, 19(4), 358-365. https://europub.co.uk/articles/-A-178428