Some remarks on similar topologies / Pewne uwagi o podobnych topologiach

Abstract

Let T1, T2 be topologies defined on a set X. Assume that T1 and T2 are similar, that means the families of sets with nonempty interior in topological spaces (X; T1) and (X; T2) are equal. The aim of our paper is to check if the family of similar topologies forms a lattice and to examine the classes of continuous functions with similar topologies on the domain and range of the functions.

Authors and Affiliations

Małgorzata Filipczak

Keywords

Related Articles

Nonclassical parameters in kernel estimation

In kernel method, using in estimation as well as in hypothesis testing problems, two parameters should be fixed: kernel function and smoothing parameter. Some methods of kernel estimation and methods of choosing kernel p...

Analysis of the kinetics of decomposition of calcium carbonate for designing a hydrogen storage material

This paper is a theoretical study based on the structure of CaCO3, routed the challenge of developing a material capable of storing hydrogen. Therefore, a theoretical analysis of the kinetics of decomposition of calcium...

Estimates for approx-imations by Fourier sums, best approximations and best orthogonal trigonometric approximations of the classes of ψ, β ) differentiable functions / Oszacowania dla aproksymacji sumami Fouriera, najlepszych aproksymacji i najlepszych ortogonalnych trygonometrycznych aproksymacji klas funkcji różniczkowalnych

We obtain the exact-order estimates for approximations by Fourier sums, best ap- proximations and best orthogonal trigonometric approximations in metrics of spaces Ls, 1 ≤s < 1, of classes of 2 π -p eriodic functions, wh...

Download PDF file
  • EP ID EP191778
  • DOI -
  • Views 45
  • Downloads 0

How To Cite

Małgorzata Filipczak (2016). Some remarks on similar topologies / Pewne uwagi o podobnych topologiach. Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations, 0(3), 39-46. https://europub.co.uk/articles/-A-191778