Strictly diagonal holomorphic functions on Banach spaces
Journal Title: Карпатські математичні публікації - Year 2015, Vol 7, Issue 2
Abstract
In this paper we investigate the boundedness of holomorphic functionals on a Banach space with a normalized basis {en} which have a very special form f(x)=f(0)+∑∞n=1cnxnn and which we call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and uniformly continuous on every ball of a fixed radius.
Authors and Affiliations
O. I. Fedak, A. V. Zagorodnyuk
Wiman's inequality for analytic functions in D×C with rapidly oscillating coefficients
Let A2 be a class of analytic function f represented by power series of the from f(z)=f(z1,z2)=+∞∑n+m=0anmzn1zm2 with the domain of convergence T={z∈C2:|z1|<1,|z2|<+∞} such that ∂∂z2f(z1,z2)≢0 in T and there exists r0...
Boundary problem for the singular heat equation
The scheme for solving of a mixed problem with general boundary conditions is proposed for a heat equation $$ a(x)\frac{\partial T}{\partial \tau}= \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x...
On meromorphically starlike functions of order $\alpha$ and type $\beta$, which satisfy Shah's differential equation
According to M.L. Mogra, T.R. Reddy and O.P. Juneja an analytic in ${\mathbb D_0}=\{z:\,0<|z|<1\}$ function $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}f_n z^{n}$ is said to be meromorphically starlike of order $\alpha\in [0...
Skew semi-invariant submanifolds of generalized quasi-Sasakian manifolds
In the present paper, we study a new class of submanifolds of a generalized Quasi-Sasakian manifold, called skew semi-invariant submanifold. We obtain integrability conditions of the distributions on a skew semi-invaria...
The nonlocal boundary problem with perturbations of antiperiodicity conditions for the eliptic equation with constant coefficients
In this article, we investigate a problem with nonlocal boundary conditions which are perturbations of antiperiodical conditions in bounded m-dimensional parallelepiped using Fourier method. We describe properties of a t...