Study on the distribution law of co-pyrolysis products of tar models and sawdust
Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 2
Abstract
In this study, toluene and acetic acid were investigated as model biomass tars, and sawdust was used as the feedstock. Co-pyrolysis experiments were conducted in a first-order fixed-bed reaction system to maximize the tar removal from sawdust. The distribution of co-pyrolysis products at different temperatures and the synergistic effects among the products were discussed. The results showed that compared to the pyrolysis of sawdust alone, the co-pyrolysis of sawdust with toluene and acetic acid exhibited a superior tar removal effect. Specifically, the co-pyrolysis of sawdust and toluene effectively reduced the tar yield by 81.47%. From the perspective of tar components, oxygen-containing compounds could not be effectively removed during the co-pyrolysis process, while aromatic hydrocarbons were easy to be removed by high-temperature co-pyrolysis. The synergistic effect of co-pyrolysis of acetic acid and sawdust was slightly weaker than that of toluene. The yield change of co-pyrolysis products affected by temperature was consistent with that of sawdust pyrolysis alone. Furthermore, the inhibitory effect of pyrolysis temperature on coke and tar was enhanced, providing a reference for tar removal and efficient conversion.
Authors and Affiliations
LI Xueqin|Changzhou Key Laboratory of Biomass Green, Safe, and High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, China, Department of Chemical Engineering for Energy Resources, School of Resources and Environmental Engineering, East China University of Science and Technology,China, LIU Peng|Changzhou Key Laboratory of Biomass Green, Safe, and High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, China, WANG Lingling|Changzhou Key Laboratory of Biomass Green, Safe, and High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, China, HUHE Taoli|Changzhou Key Laboratory of Biomass Green, Safe, and High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, China, WANG Zhiwei|School of Environmental Engineering, Henan University of Technology, China, Institute for Carbon Neutrality, Henan University of Technology, China, LEI Tingzhou*|Changzhou Key Laboratory of Biomass Green, Safe, and High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, China
Progress in selective electrochemical reduction of nitrate into ammonia
Selective electrochemical reduction of nitrate (NO3-) into ammonia (NH_3) is critical for environmental remediation and resource recovery. This review comprehensively summarizes the recent advances in electrochemical con...
Application status and prospect of hydrogen under low carbon background
The massive consumption of fossil fuels has caused the excessive emission of greenhouse gases and caused serious environmental issues. It is urgent to optimize the energy structure, develop clean energy and achieve "low-...
Research status and innovative utilization strategy of coal gangue resource in building material field
Coal gangue has been the biggest industrial solid waste discharged in our country, with the cumulative stockpile of more than 7 billion tons. The accumulation and discharge of coal gangue occupy a large amount of land, p...
Advances in low-temperature flue gas denitrification catalyst research
In coal-fired, cement and waste incineration plants, water vapour and SO_2 contained in the flue gas could easily lead to poisoning and deactivation of the catalyst under low-temperature environments. Therefore, addressi...
Estimation and analysis of greenhouse gas emissions from wastewater treatment in China
Although the greenhouse gas emissions caused by wastewater treatment are increasingly concerned, there is still a lack of research on the greenhouse gas (GHG) emissions, regional distribution, important influencing facto...