The Application of Machine Learning in Faculty Assessment: A Case Study of Narxoz University

Journal Title: Zarządzanie Zasobami Ludzkimi - Year 2018, Vol 122, Issue 3

Abstract

This paper shows that machine learning models can be used to achieve a more transparent, fair, and unbiased faculty incentive system that is closely linked to the implementation of university strategy. Narxoz University in Almaty, Kazakhstan, has implemented the KPI system, with strategic goals cascaded into organizational units and from there to individual faculty and staff members. Wage increase and promotion decisions are linked to a semi–annual faculty and staff performance review. This, in its turn is based on the KPI assessment, quality of teaching, research output, and additional achievements. Data analyzed by Narxoz’s HR Committee as well as decisions taken by the Committee to estimate logit and CART models that recommend wage raise decisions were used. We have demonstrated that these simple machine learning models can replicate HR Committee decisions with good accuracy. Moreover, we have also shown that faculty members selected for wage raises by machine learning algorithms achieve better results than faculty promoted by the HR Committee. This paper also presents the benefits of using data science techniques in HR processes at business schools. Firstly, the technique leads to the discovery of the actual decision processes that take place. Secondly, it allows verification of whether decisions are taken in line with internal procedures or without regard for such procedures, and allows the verification of their time consistency. Thirdly, such analysis provides good grounds for a transparent discussion about improvements in HR processes. Finally, a modeling of HR decisions allows the creation of evidence–based policies and helps forge a learning organizational culture.

Authors and Affiliations

Krzysztof Rybinski, Viktoriya Tsay

Keywords

Related Articles

Zależność między prowadzoną działalnością szkoleniową a rodzajem kapitału i formy prawnej organizacji / Training Activities Applied by Companies Operating in Poland

W artykule zostały zaprezentowane wyniki badania kwestionariuszowego, stanowiącego część projektu badawczego dotyczącego poziomu wykorzystywania wiedzy zarządczej w procesach zarządzania zasobami ludzkimi w organizacjach...

Praktyki zarządzania talentami w szpitalach

Szpitale to podstawowy element struktury systemów ochrony zdrowia. Ich zadaniem jest realizacja procedur akutowych. Efektywność szpitali jest determinowana zarówno ilością, jak i jakością kapitału ludzkiego będące...

Bariery w zarządzaniu różnorodnością kulturową – wymiar indywidualny, grupowy i organizacyjny / Barriers in Managing Cultural Diversity: Individual, Group, and Organizational Dimensions

Zarządzanie różnorodnością stanowi obecnie najwyższe stadium rozwoju funkcji personalnej. Z uwagi na coraz większą liczbę przedsiębiorstw międzynarodowych, w których praca wykonywana jest w zespołach złożonych z przedsta...

Individual Coaching in the Service of Retaining Talent in Private Businesses

Talent management (TM), a competitive advantage for businesses, plays a crucial role in human resource management. The focus of this research paper is to show how individual coaching can help retain talents in a small pr...

Call For Papers. Perspective for Adapting New ICT–based HRM Tools

(...) Falling unemployment coupled with the aging of the population and the emigration of young, educated Poles is resulting in the need for Polish organizations to adapt to worker expectations. Thus, questions tied to c...

Download PDF file
  • EP ID EP367619
  • DOI -
  • Views 27
  • Downloads 0

How To Cite

Krzysztof Rybinski, Viktoriya Tsay (2018). The Application of Machine Learning in Faculty Assessment: A Case Study of Narxoz University. Zarządzanie Zasobami Ludzkimi, 122(3), 145-170. https://europub.co.uk/articles/-A-367619