The effect of power alternation frequency during cycling on metabolic load and subsequent running performance

Journal Title: Journal of Science and Cycling - Year 2012, Vol 1, Issue 2

Abstract

The purpose of this study was to determine whether the frequency of power output alternation during cycling affects subsequent running performance. Eleven male triathletes completed a graded cycle test to determine peak oxygen uptake and the corresponding power at 35% delta. Two performance tests were then conducted, each comprising of a thirty minute cycling protocol followed by a 5 km free pace run. Mean cycling power was equal for both trials (35% delta), however the frequency of power alternations differed. In one trial cycling power output alternated every five minutes, whereas in the other trial cycling power output alternated every one minute. Power was set to alternate 15% above and below the 35% delta value. No significant difference was found between trials for the subsequent 5 km running performance time (P = .63). A significant difference was observed for overall mean heart rate between cycle trials (P = .045), however no significant difference was observed for overall mean oxygen uptake, minute ventilation, respiratory exchange ratio, blood lactate, rating of perceived exertion or pedal cadence (P > 0.05). When data was divided into 5 minute epoch stages rating of perceived exertion was significantly different between cycle trials at epochs three (minutes 10-15; P = .046) and five (minutes 20-25; P < 0.001). We conclude that when power is alternated equally during cycling, the frequency of power change (maximum of five minutes, minimum of one minute) does not affect subsequent running performance.

Authors and Affiliations

Colin F Hill*| Institute of Sport and Exercise Science, University of Worcester, United Kingdom., Alan St Clair Gibson| School of Psychology and Sport Sciences, Northumbria University, United Kingdom

Keywords

Related Articles

Qualitative body composition of cyclists: bioimpedance vector analysis discriminates different categories of cyclists

Bioelectrical impedance vector analysis (BIVA) and the phase-angle (PA), derived from bioelectrical impedance raw values (i.e., resistance, R, and reactance, Xc) allow qualitative and descriptive assessments of body comp...

Quantification of vibrations during mountain biking

Background: During cross-country mountain biking, riders are subjected to vibrations due to the terrain, which must be damped before reaching the central nervous system. Damping vibrations requires work, which may help...

Validity of Track Aero System to assess aerodynamic drag in professional cyclists

Purpose: Aerodynamic drag is the main resistance (80-90 %) among the total resistive forces (RT, N) opposing motion on level ground in cycling. It is important to decrease it to improve the performance in time-trial (TT)...

Modelling of cycling power data and its application for anti-doping

Since the introduction of the Athlete Biological Passport (ABP), research studies have suggested that there is risk of false-positive results due to a variety of factors that act to compromise its sensitivity to detect u...

Low Cadence, High Resistance Creates More Muscle Breakdown than High Cadence, Low Resistance in Well Trained Cyclists during High Intensity Interval Training

Research by Laursen (2005:Journal of Strength and Conditioning Research, 19, 527-533) demonstrated the positive effects of High Intensity Interval Training on cycling performance concluding that peripheral (muscular) ad...

Download PDF file
  • EP ID EP2807
  • DOI -
  • Views 601
  • Downloads 31

How To Cite

Colin F Hill*, Alan St Clair Gibson (2012). The effect of power alternation frequency during cycling on metabolic load and subsequent running performance. Journal of Science and Cycling, 1(2), 35-41. https://europub.co.uk/articles/-A-2807