THE FIRST COMPARATIVE ANALYSIS OF METEOR ECHO AND SPORADIC SCATTERING IDENTIFIED BY A SELF-LEARNED NEURAL NETWORK IN EKB AND MAGW ISTP SB RAS RADAR DATA
Journal Title: Solar-Terrestrial Physics - Year 2022, Vol 8, Issue 4
Abstract
The paper describes the current version (v.1.1) of the algorithm for automatic classification of signals received by ISTP SB RAS decameter coherent scatter radars. The algorithm is a self-learning neural network that determines the type of scattered signals from the results of physical modeling of radio wave propagation, using radar data and international reference models of the ionosphere and geomagnetic field. According to MAGW and EKB ISTP SB RAS radar data for 2021, the algorithm self-learns to classify scattered signals into initially unknown classes based on physically interpreted parameters of radio wave propagation and data measured by the radar, with 15 frequently observed out of 20 possible hidden classes identified, 14 of which can be interpreted from a physical point of view. To demonstrate the operation of the algorithm, we present the first statistical analysis of observations of signals assigned by the algorithm to classes which we interpret as scattering by meteor trails and scattering with the sporadic E layer respectively. Through a statistical analysis of EKB and MAGW radar data during 2021–2022, we demonstrate the range-altitude characteristics of signals of these types. A correlation is shown between the hourly average numbers of observations of both classes, as well as between the hourly average line-of-sight velocities obtained for both classes. The results obtained make it possible to interpret these classes as a meteor echo and sporadic scattering respectively, and to use radar data to study the interaction between the neutral atmosphere (studied from meteor scattering data) and the lower ionosphere (studied from observations of sporadic scattering). Currently, this classification algorithm works in ISTP SB RAS radars in automatic mode.
Authors and Affiliations
Berngardt O. I.
MEASUREMENT OF SIBERIAN RADIOHELIOGRAPH CABLE DELAYS
To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation d...
METHOD FOR CALCULATING TORSIONAL OSCILLATIONS IN EARTH’S ATMOSPHERE FROM NCEP/NCAR, MERRA-2, ECMWF ERA-40, AND ERA-INTERIM
In this paper, we describe a method for calculating low-frequency zonal-mean zonal wind variations, which we call torsional oscillations. We compare the torsional oscillations calculated from the NCEP/NCAR reanalysis I,...
OBSERVING THE NEUTRON COMPONENT DURING THUNDERSTORM ACTIVITY AT A MOUNTAIN CR STATION
During three summer months in 2015, the Cosmic Ray (CR) station Irkutsk-3000, located at 3000 m above sea level, measured the CR neutron component intensity with the 6NM64 neutron monitor, as well as the atmospheric elec...
Response of the mid-latitude atmosphere to sporadic cosmic ray variations in the western Siberian region
The article presents the results of long-term observations of cosmic ray variations and changes in atmospheric parameters at midlatitudes in the Novosibirsk Region. The atmospheric response to Forbush decreases in galact...
Manifestation of solar activity and dynamics of the atmosphere in variations of 577.7 and 630.0 nm atmospheric emissions in solar cycle 24
In the paper, variations of the night emission intensities in the 557.7 and 630 nm atomic oxygen lines [OI] in 2011–2019 have been analyzed. The analysis is based on data from the ISTP SB RAS Geophysical Observatory. The...