The operator G(a; b;Dq) for the polynomials Wn(x; y; a; b; q)
Journal Title: JOURNAL OF ADVANCES IN MATHEMATICS - Year 2015, Vol 9, Issue 8
Abstract
We give an identity which can be regarded as a basic result for this paper. We give special value to the parameters in this identity to get some welknown identities such as Euler identity and Cauchy identity. Inspired by this indentity we introduce an operator G(a, b;Dq). The exponential operator R(bDq) defined by Saad and Sukhi [11] can be considered as a special case of the operator G(a, b;Dq) for a = 0. Also we introduce a polynomials Wn(x, y, a, b; q). Al-Salam-Carlitz polynomials Un(x, y, b; q) [4] is a special case of Wn(x, y, a, b; q) for a = 0. So all the identities for the polynomials Wn(x, y, a, b; q) are extensions of formulas for the Al-Salam-Carlitz polynomials Un(x, y, a; q). We give an operator proof for the generating function, the Rogers formula and the Mehlers formula for Wn(x, y, a, b; q). Rogers formula leads to the inverse linearization formula. We give another Rogers-type formula for the polynomials Wn(x, y, a, b; q).
Authors and Affiliations
Husam L. Saad, Faiz A. Reshem
SELECTION OF A LEADER FOR A COMPANY BY USING PRIORITIZATION METHODS OF ANALYTIC HIERARCHY PROCESS AN ILLUSTRATION
This paper aims at selection of a leader for a company (whose founder is about to retire) with one of the popular decision making techniques. Analytic Hierarchy Process is an approach to decision making that involves str...
Variable Thermal Conductivity and Viscosity Flow past a Stretching Porous Surface with Viscous Dissipation through a Porous Medium
In this work, we study variable thermal conductivity and viscosity flow past a porous surface with viscous dissipation through a porous medium. We transformed the governing partial differential equations into ordinary di...
Generalized Fibonacci Numbers and Music
Mathematics and music have well documented historical connections. Just as the ordinary Fibonacci numbers have links with the golden ratio, this paper considers generalized Fibonacci numbers developed from generalization...
A q-VARIANT OF STEFFENSEN'S METHOD OF FOURTH-ORDER CONVERGENCE
Starting from q-Taylor formula, we suggest a new q-variant of Stef-fensen's method of fourth-order convergence for solving non-linear equations.
Degree of approximation of Conjugate Series of a Fourier Series by (E,r)(N,p,q) Means
In this paper a theorem on degree of approximation of a function f Lip ? by product Summability(E,r)(N,p,q)of conjugate series of Fourier series associated with f, has been established.