Uncertainty Analysis in MRI-based Polymer Gel Dosimetry

Journal Title: Journal of Biomedical Physics and Engineering - Year 2017, Vol 7, Issue 3

Abstract

Background: Polymer gel dosimeters combined with magnetic resonance imaging (MRI) can be used for dose verification of advanced radiation therapy techniques. However, the uncertainty of dose map measured by gel dosimeter should be known. The purpose of this study is to investigate the uncertainty related to calibration curve and MRI protocol for MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) gel and finally ways of optimization MRI protocol. Materials and Methods: MAGIC gel was prepared by the Fong et al. instruction. The gels were poured into calibration vials and irradiated by 18 MV photons. 1.5 Tesla MRI was used for reading out information. Finally, uncertainty of measured dose was calculated. Results: Results show that for MAGIC polymer gel dosimeter, at low doses, the estimated uncertainty is high (≈ 18.96% for 1 Gy) but it reduces to approximately 4.17% for 10 Gy. Also, with increasing dose, the uncertainty for the measured dose decreases non-linearly. For low doses, the most significant uncertainties are σ_R0 (uncertainty of intercept) and σ_a (uncertainty of slope) for high doses. MRI protocol parameters influence signal-to-noise ratio (SNR). Conclusion: The most important source of uncertainty is uncertainty of R2. Hence, MRI protocol and parameters therein should be optimized. At low doses, the estimated uncertainty is high and reduces by increasing dose. It is suggested that in relative dosimetry, gels are irradiated by high doses in linear range of given gel dosimeter and then scaled down to the desired dose range.

Authors and Affiliations

M Keshtkar, A Takavar, M H Zahmatkesh, A R Montazerabadi

Keywords

Related Articles

A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose...

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artif...

Editorial

there is no Abstract.

New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor

Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing sci...

Synthesis and Cytotoxicity Assessment of Gold-coated Magnetic Iron Oxide Nanoparticles

Introduction: One class of magnetic nanoparticles is magnetic iron oxide nanoparticles (MIONs) which has been widely offered due to of their many advantages. Owing to the extensive application of MIONs in biomedicine, be...

Download PDF file
  • EP ID EP331811
  • DOI -
  • Views 113
  • Downloads 0

How To Cite

M Keshtkar, A Takavar, M H Zahmatkesh, A R Montazerabadi (2017). Uncertainty Analysis in MRI-based Polymer Gel Dosimetry. Journal of Biomedical Physics and Engineering, 7(3), 299-304. https://europub.co.uk/articles/-A-331811