USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY

Abstract

This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.

Authors and Affiliations

Grzegorz Kłosowski, Tomasz Rymarczyk

Keywords

Related Articles

APPLICATION OF THE MOLECULAR DYNAMICS METHOD FOR MODELLING OF MASS TRANSFER ON THE BORDER OF NI-AL BIMETAL

One of the basic issues of examination of process of interaction of two-component alloys is the study of the mass transfer process in the presence of dot flaws: internodal atoms and vacancies. The study of this process...

ZALEŻNOŚĆ CZĘSTOTLIWOŚCIOWA NAPIĘCIOWEGO WSPÓŁCZYNNIKA MAGNETOELEKTRYCZNEGO W CERAMIKACH (BiFeO3)x-(BaTiO3)1-x

Zależność właściwości magnetoelektrycznych od składu chemicznego w ceramikach (BiFeO3)x-(BaTiO3)1-x została w ostatnim czasie zaobserwowana i odnotowana w literaturze. Pomiary efektu magnetoelektrycznego (ME) w tych mate...

UTILIZATION IONEX FILE FOR POSITIONING CORRECTION OVER RYKI DISTRICT AREA

Article presents studies results regard to standalone positioning correction over Ryki District area. In the experiment GPS code observations from RYKI reference station were utilized. Station coordinates were estimated...

HOW STABLE ARE INSTRUMENTAL BIASES P2-C2?

This paper presented results of investigations about estimation DCB P2-C2 for satellites and receiver in GPS system. The data from LAMA station in Poland were used to determination of stability instrumental biases P2-C2,...

COMPARISON OF THE SELECTED MOTION INTERPOLATION METHODS

Interpolation is one of key aspects of computer animation. The selection of the proper interpolation method influences motion of animated objects. The paper presents selected interpolation methods and compares them with...

Download PDF file
  • EP ID EP227015
  • DOI 10.5604/01.3001.0010.5226
  • Views 103
  • Downloads 0

How To Cite

Grzegorz Kłosowski, Tomasz Rymarczyk (2017). USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska, 7(3), 99-102. https://europub.co.uk/articles/-A-227015