USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY

Abstract

This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.

Authors and Affiliations

Grzegorz Kłosowski, Tomasz Rymarczyk

Keywords

Related Articles

WEB SERVER LATENCY REDUCTION STUDY

This paper investigates the characteristics of web server response delay in order to understand and analyze the optimization techniques of reducing latency. The analysis of the latency behavior for multi-process Apache H...

FLAME MONITORING USING IMAGE CLASSIFICATION

This paper presents comparison of image classification methods for co-firing biomass and pulverized coal. Two classes of combustion – stable and unstable were defined for nine variants with different power value par...

MAXIMUM SUBARRAY PROBLEM OPTIMIZATION FOR SPECIFIC DATA

The maximum subarray problem (MSP) is to the find maximum contiguous sum in an array. This paper describes a method of Kadanes algorithm (the state of the art) optimization for specific data (continuous sequences of zero...

Teoretyczne podstawy metody elementów brzegowych Fouriera

Tradycyjna metoda elementów brzegowych(MEB) [4] prowadzi w efekcie do rozwiązania układu równań liniowych z pełną macierzą współczynników. Stosując podejście Galerkina ostateczny układ równań liniowych jest reprezentowa...

CREATING ALGORITHM FOR SIMULATION OF FORMING FLAT WORKPIECES

Problems of creating of the algorithm and software for the simulation of some metal forming processes are considered. The results obtained in the simulation of the flow pattern of metal for processes of forging and stamp...

Download PDF file
  • EP ID EP227015
  • DOI 10.5604/01.3001.0010.5226
  • Views 116
  • Downloads 0

How To Cite

Grzegorz Kłosowski, Tomasz Rymarczyk (2017). USING NEURAL NETWORKS AND DEEP LEARNING ALGORITHMS IN ELECTRICAL IMPEDANCE TOMOGRAPHY. Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska, 7(3), 99-102. https://europub.co.uk/articles/-A-227015