Volume and area of intersection of a ball and an infinite parallelepiped

Journal Title: Проблемы анализа-Issues of Analysis - Year 2012, Vol 1, Issue 1

Abstract

В статье рассматривается тело, являющиеся пересечением шара и прямого произведения квадрата на прямую (бесконечный параллелепипед), причем диаметр шара лежит на оси симметрии параллелепипеда. Вычисляются объем и площадь поверхности этого тела.

Authors and Affiliations

I. A. Chernov

Keywords

Related Articles

The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain

Here we apply the Cauchy integral method for the Laplace equation in multiply connected domains when the data on each boundary component has the form of the Dirichlet condition or the form of the Neumann condition. This...

ОБ ОДНОМ СВОЙСТВЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ПСЕВДОИНТЕРВАЛЬНЫМИ ПЕРЕМЕННЫМИ

The optimization task with linear constraints of pseudo-interval variables is discussed in the article. It is proofed that if the task has optimal solution, then there is a solution that has not more than M non-zero vari...

ON COMPLEX HARMONIC TYPICALLY-REAL FUNCTIONS WITH A POLE AT THE POINT ZERO

Several mathematicians examined classes of meromorphic typically-real functions with a simple pole at the point zero. This article includes results concern class Q' H of complex harmonic typically-real functions with a p...

ON WEIGHTED GENERALIZED FUNCTIONS ASSOCIATED WITH QUADRATIC FORMS

In this article we consider certain types of weighted generalized functions associated with nondegenerate quadratic forms. Such functions and their derivatives are used for constructing fundamental solutions of iterated...

Download PDF file
  • EP ID EP234574
  • DOI 10.15393/j3.art.2012.1710
  • Views 81
  • Downloads 0

How To Cite

I. A. Chernov (2012). Volume and area of intersection of a ball and an infinite parallelepiped. Проблемы анализа-Issues of Analysis, 1(1), 40-58. https://europub.co.uk/articles/-A-234574