Weight reduction of motorcycle frame by topology optimization

Abstract

Purpose: of this paper is to improve the fuel efficiency of electrical motorcycle by reducing the weight of its frame without affecting the basic functionalities, dimensions and performance. Design/methodology/approach: Weight reduction of the frame was achieved by topology optimization technique. Initially the load and stresses acting on the frame was studied. Material of the frame was chosen as Aluminium and the frame was geometrically modelled using Autodesk Fusion 360. With the help of ANSYS AIM 18.2, weight of the frame was optimized by the design modifications suggested by the concept of topology optimization, for the corresponding loads and stresses induced on it. It was observed that the stress induced on the modified design was lesser than that of respective permissible yield stress of the frame material. After optimization, the weight of the frame was reduced from 3.0695 kg to 2.215 kg with the weight reduction of 27.84%. The weight reduction shows that the topology optimization is an effective technique, without compensate the performance of the frame. Approach used in the paper for the weight reduction of the frame is the topology optimization. The modelled frame was topology optimized by using ANSYS 18.2. After the topology optimization, the regions where the metal removal is possible, for weight reduction was identified. Findings: In this paper, the motor cycle frame was optimized and weight of the frame was reduced from 3.065 kg to 2.215 kg. Weight reduction of 27.84% was achieved without compensating the performance. Research limitations/implications: All the components of the automobile may be topology optimized for the weight reduction, thereby improving the fuel efficiency. Innovative design/Improvement in design also possible. Practical implications: By reducing the weight of the frame, weight of the automobile also reduces. Reduction in weight of the automobile leads to improved fuel efficiency. Originality/value: Weight of the motorcycle frame reduced by topology optimization. The regions of material removal at the frame, without compensating the performance was identified.<br/><br/>

Authors and Affiliations

C. Bala Manikandan, S. Balamurugan, P. Balamurugan

Keywords

Related Articles

Finite elements analysis of the side grooved I-beam specimen for mode II fatigue crack growth rates determination

Purpose: Carefully investigate the stress-strain state of the side grooved I-beam specimen with edge crack and determine the effect of crack length and crack faces friction on stress intensity factor at transverse shear....

Development of ice abrasive waterjet cutting technology

Purpose: Abrasive water jet (AWJ) cutting uses mineral abrasive to cut practically all materials. In ice abrasive water jet (IAWJ) cutting, the ice particles are used as abrasive. IAWJ is under development with the aim t...

Comparison of the structure and topography of selected low friction thin films

Purpose: The purpose of this article is to characterize and compare the structure, mechanical and tribological properties of low friction DLC and TiC thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substra...

Effect of combinative cooled addition of strontium and aluminium on mechanical properties AlSi12 alloy

Purpose: The study was to determine the mechanical properties of hypo-eutectic silumin AlSi12 modified with Sr or Al-Sr alloy slow or fast cooled and in the form of a strip or powder. Design/methodology/approach: The exp...

Analysis of weld bead characteristics on GMAW by changing wire electrode geometry

Purpose: Welding is one of the important processes for the manufacture of a wide varietyof products. Most of the manufactured products have to be produced by welding due to itsgreater productivity and economical viabilit...

Download PDF file
  • EP ID EP516321
  • DOI 10.5604/01.3001.0012.9664
  • Views 120
  • Downloads 0

How To Cite

C. Bala Manikandan, S. Balamurugan, P. Balamurugan (2018). Weight reduction of motorcycle frame by topology optimization. Journal of Achievements in Materials and Manufacturing Engineering, 2(91), 67-77. https://europub.co.uk/articles/-A-516321