A Note on Characterization of h-Convex Functions via Hermite-Hadamard Type Inequality

Journal Title: Проблемы анализа-Issues of Analysis - Year 2019, Vol 8, Issue 2

Abstract

A characterization of h-convex function via Hermite-Hadamard inequality related to the h-convex functions is investigated. In fact it is determined that under what conditions a function is h-convex, if it satisfies the h-convex version of Hermite-Hadamard inequality.

Authors and Affiliations

M. Delavar, Sever S. Dragomir

Keywords

Related Articles

STRUCTURE OF KELLER MAPPINGS, TWO-DIMENSIONAL CASE

A Keller map is a polynomial mapping ƒ : Rⁿ → Rⁿ (or Cⁿ → Cⁿ) with the Jacobian Jƒ ≡ const ≠ 0. The Jacobian conjecture was first formulated by O. N. Keller in 1939. In the modern form it supposes injectivity of a Keller...

ОБ ОБЛАСТЯХ, КОНФОРМНО ИЗОМОРФНЫХ ПЛОСКОСТИ С РАЗРЕЗАМИ ВДОЛЬ ПРЯМОЙ

It is proved that extended complex plane with n slits on the real axis is conformally isomorphed to a circular domain, symmetric with respect to this axis.

ВЗАИМНЫЕ МУЛЬТИФРАКТАЛЬНЫЕ СПЕКТРЫ I. ТОЧНЫЕ СПЕКТРЫ

It has introduced the fine mutual multifractal spectra for Borel probability measures and received the estimations for these spectra.

ВЗАИМНЫЕ МУЛЬТИФРАКТАЛЬНЫЕ СПЕКТРЫ II. СПЕКТРЫ ЛЕЖАНДРА, ХЕНТШЕЛЬ - ПРОКАЧИА И СПЕКТРЫ, ОПРЕДЕЛЕННЫЕ ДЛЯ РАЗБИЕНИЙ

In this paper we introduce such coarse multifractal spectra as the mutual Legendre multifractal spectra, the mutual Hentschel - Procaccia spectra and the spectra, which defined for partitions of metric space X.

КЛАССИФИКАЦИЯ ВЫПУКЛЫХ МНОГОГРАННИКОВ

The paper is continuation of the author's series of paper devoted to the solution of Hadviger's problem of covering convex polyhedrons with body images at homothety. The problem under discussion in this paper can be desc...

Download PDF file
  • EP ID EP593163
  • DOI 10.15393/j3.art.2019.5790
  • Views 116
  • Downloads 0

How To Cite

M. Delavar, Sever S. Dragomir (2019). A Note on Characterization of h-Convex Functions via Hermite-Hadamard Type Inequality. Проблемы анализа-Issues of Analysis, 8(2), 28-36. https://europub.co.uk/articles/-A-593163