АНАЛІЗ МАТЕМАТИЧНИХ МОДЕЛЕЙ ОПОРУ ДЕФОРМУВАННЮ ДЛЯ УМОВ ВИСОКОШВИДКІСНИХ БЛОКІВ ДРОТОВИХ СТАНІВ

Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 1

Abstract

ANALYSIS OF MATHEMATICAL MODELS OF FLOW STRESS FOR THE CONDITION OF HIGH-SPEED BLOCKS OF WIRE ROD MILLS Samokhval V.M., Shtoda M.M., Marchenko K.K. Abstract Mathematical models of rolling processes are widely used to predict technological parameters and product quality property, as well as in systems of automatic control and accounting. A required component of such models, in the form of software products, are models for determining the resistance of metal to deformation – flow stress for conditions of deformation.. The accuracy of determining the resistance to deformation by a significant amount depends on the accuracy of the determination of rolling power and other power-consuming parameters, which, in turn, determine the characteristics of the equipment, the quality of the products and the technical and economic indicators of the production processes. Therefore, the refinement of existing and the development of new models to determine the resistance to deformation, which more closely correspond with modern technological processes, remains a very topical task. The purpose of this work is to analyze known mathematical models of resistance to deformation and possibilities of their application for conditions of high-speed blocks of wire rod mills. Based on the analysis of known mathematical models of resistance to deformation, refined models of Zyuzin and Andreyuk are proposed. For both models it is recommended to determine the degree of deformation due to the relative change in the cross-sectional area, and the coefficient taking into account the influence of the strain rate is calculated to the values of this parameter in 300 s-1. When exceeding this value, the coefficient is taken as a constant calculated for the specified value of the deformation rate. In addition, for the model of Zyuzin proposed, obtained from the approximation of experimental data, the dependence on the coefficient, which takes into account the influence of the rate of deformation. Refined models can be used to determine the resistance to deformation in high-speed blocks in the development of technology and in systems of automatic control. References [1] Zybel Э. (1910) Soprotyvlenye deformatsyy y ystechenye materyala pry prokatke. / Э. Zybel // Stahl und Eisen. – № 51. – S. 1769 – 1775. [2] Cook, P.M. (1957) “True Stress-Strain Curves for Steel in Compression at High Temperatures and Strain Rates, for Application to the Calculation of Load and Torque in Hot Rolling,” Proceedings of the Conference on Properties of Materials at High Strain Rates, Institute of Mechanical Engineers. – pp. 86–97. [3] Dynnyk A. A.( 1962) – V kn. : Teoryia prokatky. Materyas konferentsyy po teoretycheskym voprosam prokatky. – M. : Metallurhyzdat. – S. 157–173 [4] Ziuzyn V. Y. (1964) Soprotyvlenye deformatsyy stalei pry horiachei prokatke / V. Y. Ziuzyn, M. Ya. Brovman, A. F. Melnykov. – M. : Metallurhyia. – 270 s. [5] Tretiakov A. V. (1973) Mekhanycheskye svoistva metallov y splavov pry obrabotke metallov davlenyem : Spravochnyk [Yzd. vtoroe, pererab. y dopoln.] / A. V. Tretiakov, V. Y. Ziuzyn. – M. : Metallurhyia. – 224 s. [6] Andreiuk L. V. (1972) “Analytycheskaia zavysymost soprotyvlenyia deformatsyy stalei y splavov ot ykh khymycheskoho sostava” / L. V. Andreiuk, H. H. Tiulenev, B. S. Prytsker // Stal. – № 6. – S. 522 – 523. [7] Andreiuk L. V. (1972) “Analytycheskaia zavysymost soprotyvlenyia deformatsyy metalla ot temperatury skorosty y stepeny deformatsyy / L. V. Andreiuk, H. H. Tiulenev // Stal. – № 9. – S. 825–828. [8] Shida S. (1974) “Effect of Carbon Content, Temperature and Strain Rate on Compressive Flow Stress of Carbon Steels” / Hitachi Research Laboratory Report. – p. 1–9. [9] Shvartsbart Ya. S. (1976.) “Modelyrovanye protsessa mnohostupenchatoho deformyrovanyia na mashyne dlia kruchenyia” / Ya. S. Shvartsbart, H. S. Nykytyn, Y. H. Zuev // Zavodskaia laboratoryia. – № 4. – S. 48 – 56. [10] Lee, Y. (2002) “A Study for the Constitutive Equation of Carbon Steel subjected to Large Strains, High Temperatures and High Strain Rates,” / Lee, Y., Kim, B.M., Park, K.J., Seo, S.W. and Min, O. – Journal of Materials Processing Technology. – Volume 130–131. – pp. 181–188. [11] Biswas S. (2003) Simulation of Thermo-mechanical Deformation in High Speed Rolling of Long Steel Products : [A Thesis in Partial Fulfillment of the Requirements for the Degree of Master of Science]. – Worcester Polytechnic Institute. – P. 172. – https://web.wpi.edu/Pubs/ETD/Available/etd-1027103-203032/unrestricted/sbiswas.pdf [12] Lee Y. (2001) “Analytic Model for the Prediction of Mean Effective Strain in Rod Rolling Process” / Lee, Y., Kim, H.J. and Hwang, S.M. // Journal of Materials Processing Technology.. – Volume 114. – pp. 129–138. [13] Tymoshpolskyi V. Y. (2004) Proyzvodstvo vysokouhlerodystoi katanky na metallurhycheskykh ahrehatakh vyssheho tekhnycheskoho urovnia : [Nauchnoe yzdanye] / V.Y. Tymoshpolskyi, N.V. Andryanov, S.M. Zhuchkov y dr. – Mynsk : Bel. Nauka. – 237 s. [14] Smyrnov V. K. (1987) Kalybrovka prokatnykh valkov: [Uchebnoe posobye dlia studentov vuzov] / V. K. Smyrnov, V. A. Shylov, Yu. V. Ynatovych. – M.: Metallurhyia. – 368 s. [15] Noguchi Y. (1999) “Characteristics of Continuous Wire Rod Roll Shaft and Precision Roll Shaft System” / Noguchi Yukio, Harutoshi Ogai, Kunihiko Okamura, Takayoshi Hizume, Koji Tanabe, Koji Yoshimura. // Nippon Steel Technical Report. – No 80, July. pp. 79–83. Available at: http://www.nssmc.com/en/tech/report/nsc/pdf/8016.pdf.

Authors and Affiliations

В. М. Самохвал, М. М. Штода, К. К. Марченко

Keywords

Related Articles

Окремі випадки застосування методів чисельного ресамплінгу в прикладних задачах

In this paper we investigated methods of numerical resampling, which combines three different approaches, which differ according to the algorithm, but similar in essence: randomization (or permutation), bootstrap and jac...

Математичне моделювання динамічних режимів роботи асинхронного двигуна з масивним феромагнітним ротором

MATHEMATICAL MODELING OF DYNAMIC MODES OF ASYNCHRONOUS MOTOR OPERATION WITH A MASSIVE FERROMAGNETIC ROTOR Kosukhina O.S., Polyakov R.M., Syanov O.M. Abstract The development of computers and new numerical mathematical m...

Оптимизация технологии получения многокомпонентных покрытий на основе титана в условиях СВС

OPTIMIZATION OF TECHNOLOGY OF RECEIPT OF MULTICOMPONENT COVERINGS ON BASIS OF TITAN IN THE CONDITIONS OF SHS. Sereda B.P., Palekhova I.V., Kruglyak I.V. Abstract One of effective methods of chemical - thermal treatment...

ОБҐРУНТУВАННЯ ВИБОРУ ЧИСЕЛЬНОГО МЕТОДУ ДЛЯ ВИРІШЕННЯ ЗАВДАННЯ ПЛАВЛЕННЯ, КОМБІНОВАНОГО АЛЮМОВМІСЬКОГО РОЗКИСЛЮВАЧА ЦИЛІНДРИЧНОЇ ФОРМИ, З ОБВАЖНЮВАЧЕМ, В ЗАХИСНІЙ ОБОЛОНЦІ

THE JUSTIFICATION FOR SELECTION OF NUMERICAL METHOD FOR MELTING PROBLEM SOLUTION OF WEIGHTED COMBINED ALUMINUM-CONTAINING DEOXIDIZER OF CYLINDRICAL FORM IN PROTECTIVE SHELL Babenko M.V., Voloshin R.V., Krivosheev G.A. A...

ЕФЕКТИВНИЙ МЕТОД ОПТИМІЗАЦІЇ В ЗАДАЧАХ ЛІНІЙНОГО РОЗКРОЮ МАТЕРІАЛІВ

EFFECTIVE METHOD OF OPTIMIZATION IN A LINEAR MATERIAL CUTTING Kosolap A.I., Kodola G.M. Abstract In this paper the problem of one-dimensional cutting is considered, which has practical application, for example, on the m...

Download PDF file
  • EP ID EP294880
  • DOI 10.31319/2519-8106.1(38)2018.129007
  • Views 209
  • Downloads 0

How To Cite

В. М. Самохвал, М. М. Штода, К. К. Марченко (2018). АНАЛІЗ МАТЕМАТИЧНИХ МОДЕЛЕЙ ОПОРУ ДЕФОРМУВАННЮ ДЛЯ УМОВ ВИСОКОШВИДКІСНИХ БЛОКІВ ДРОТОВИХ СТАНІВ. Математичне моделювання, 1(1), 46-54. https://europub.co.uk/articles/-A-294880