Анализ термодинамических характеристик многокомпонентного аморфного сплава на основе железа: экспериментальное исследование и теоретическая интерпрета-ция

Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 2

Abstract

ANALYSIS OF THERMODYNAMIC CHARACTERISTICS OF A MULTICOMPONENT AMORPHOUS IRON-BASE ALLOY: EXPERIMENTAL STUDY AND THEORETICAL INTERPRETATION Goranskiy G.G., Khina B.B., Sereda B.P. Abstract The paper is devoted to the theoretical interpretation of experimantal data on partial thermodynamic characteristics of the base component (here iron) of a multicomponent amorphous alloy, and combines experimental measurements and theoretical studies. The research object is a quaternary Fe–Si–B–Ni amorphous alloy developed at the Technological park “Polytechnic” of the Belorussian National Technical University. The alloy is used for spray deposition of wear-resistant coating on the rollers of a rolling mill. At spraying the alloy undergoes partial crystallization, and during service it amorphizes under the action of friction. Hence it is important to charactrerize the thermodynamic stability of the amorphous alloy. The Fe–Si–B–Ni amorphous alloy was produced by attritor processing of atomized alloy powder. Experimental measurements of the difference between the chemical potential of iron in the amorphous alloy and in a reference electrode made from Armco-Fe were performed using an electrochemical method based on momentary fixing of the electromotive force. A theoretical method is developed for calculating partial thermodynamic functions for iron (the alloy base) on the basis of the experimental data. The method employs the concept of excess entropy of mixing, which exists only in amorphous phases. As a result of calculations, the chemical potential and partial molar enthalpy of iron in the multicomponent amorphous phase are determined. It is demonstrated that the chemical potential and partial molar enthalpy of iron (the main component of the alloy) in the amorphous phase are lower, i.e. more negative than in supercooled molten iron, which testifies to better thermodynamic stability of the multicomponent amorphous phase. Since the fully amorphous phase was subjected to intensive plastic deformation, the parameters calculated using the developed method bear information about the stored energy of plastic deformation, which reveal itself in changes of the atomic structure of the amorphous phase. Thus, the developed method can be used for studying the effect of intensive plastic deformation of amorphous alloys on their thermodynamic properties and for linking these parameters to the atomic-claster structure of amorphous phases. References [1] Kovneristyi Yu.K, Osipov E.K., and Trofimova E.A._Fiziko-himicheskie osnovy sozdaniya amorfnyh metallicheskih splavov [Physicochemical basics for development of amorphous metallic alloys]. Moscow, 1983. 145 p. (in Russian). [2] Stoica M. Fe-based Bulk Metallic Glasses: Understanding the Influence of Impurities on Glass Formation. Wiesbaden: Springer, 2017. 126 p. [3] Belov G.V. and Trusov B.G. Termodinamicheskoe modelirovanie himicheski reagiruyushchih system [Thermodynamic modeling of chemically reacting systems]. Moscow, 2013. 96 p. (in Russian). [4] Kutsenok I.B., Solomonova I.V., and Tomilin I.A. Termodinamicheskaya stabil'nost' amorfnyh metallicheskih splavov [Thermodynamic stability of amorphous metal alloys]. Zhurnal fizicheskoy himii – Journal of Physical Chemistry, 1992, vol. 66, no. 12, pp.3198-3204 (in Russian). [5] Kubaschewski O., Alcock C.B. Metallurgical Thermochemistry. Oxford: Pergamon Press, 1979, 386 p. [6] Lukas H.L. Fries S.G., and Sundman B. Computational Thermodynamics: The Calphad Method. Cambridge: Cambridge University Press, 2007. 313 p. [7] Dinsdale A.T. SGTE data for pure elements. Calphad, 1991, vol. 15, pp. 317–425. [8] Takeuchi A. and Inoue A. “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys,” Materials Transactions JIM, 2000, vol. 41, pp. 1372–1378. [9] Greer A.L. “Metallic glasses on the threshold,” Materials Today, 2009, vol. 12, no. 1-2, pp. 14–22.

Authors and Affiliations

Г. Г. Горанский, Б. Б. Хина, Б. П. Середа

Keywords

Related Articles

Современные средства аппаратной и программной поддержки IEEE-стандарта

MODERN MEANS OF HARDWARE AND SOFTWARE SUPPORT FOR THE IEEE STANDARD Zhulkovska I.I., Zhulkovskii O.A. Abstract Rounding floating-point numbers is a very important problem of the existing computer arithmetic. Numbers are...

Теорія гравітації в афінному репері

THEORY OF GRAVITY IN AFFINE RAPPER Samokhvalov S.E., Krikent A.I. Abstract The article deals with the affine metric theory of gravitation. The gravitational field is determined by the curvature (geodesic deviation) and s...

Дослідження алгоритму зміни поперечної різностінності на трубопрокатному агрегаті з автоматичним станом

RESEARCH OF THE ALGORITHM OF TRANSVERSE WALL THICKNESS DEVIATION OF PIPE WHICH HAS BEEN ROLLED ON THE TRP (TUBE ROLLING PLANT) WITH AUTOMATIC MILL Sokurenko V.P., Drozhzha P.V., Bikovec K.M. Abstract Seamless steel tube...

Моделирование кинетики образования интерметаллидных сплавов в условиях самораспространяющегося высокотемпературного синтеза

THE MODELING OF THE KINETICS FORMATION OF INTERMETALLIC ALLOYS UNDER SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS Sereda B.P., Kruglyak I.V., Belokon Y.A., Belokon K.V., Zherebtsov A.A. Abstract When evaluating the possi...

Вплив частоти та індукції поздовжнього магнітного поля на втрати електродного металу та його розбризкування при MAG-зварюванні

INFLUENCE OF FREQUENCY AND INDUCTION OF LONG-MOVED MAGNETIC FIELD FOR ELECTRIC METAL LOSS AND ITS DISCHARGE IN MAG-WELDING Nosov D. G., Peremitko V. V. Abstract Mechanized welding method in active shielding gas by solid...

Download PDF file
  • EP ID EP444787
  • DOI 10.31319/2519-8106.2(39)2018.154246
  • Views 83
  • Downloads 0

How To Cite

Г. Г. Горанский, Б. Б. Хина, Б. П. Середа (2018). Анализ термодинамических характеристик многокомпонентного аморфного сплава на основе железа: экспериментальное исследование и теоретическая интерпрета-ция. Математичне моделювання, 1(2), 201-205. https://europub.co.uk/articles/-A-444787