Вплив частоти та індукції поздовжнього магнітного поля на втрати електродного металу та його розбризкування при MAG-зварюванні

Journal Title: Математичне моделювання - Year 2017, Vol 1, Issue 1

Abstract

INFLUENCE OF FREQUENCY AND INDUCTION OF LONG-MOVED MAGNETIC FIELD FOR ELECTRIC METAL LOSS AND ITS DISCHARGE IN MAG-WELDING Nosov D. G., Peremitko V. V. Abstract Mechanized welding method in active shielding gas by solid cross-section wire — MAG-welding – certainly has a number of advantages over the manual arc welding process. However, along with the advantages this method has drawbacks that reduce the effectiveness of its use: the low productivity compared to the automatic welding methods; quality dependence of the welded joint on the skill of the welder; significant metal loss on spattering, which constitutes up to 10…15% of welding wire weight. Spattering is accompanied by the ejection from arc zone the sprays of molten metal of various size, which come into physical and chemical interaction with the surface layers of the weld metal. The protection of metal surface from spray sticking and / or its cleaning leads to the need of additional works in a volume of 20…40% of the overall complexity of the welding operations. Among the main reasons of metal droplets ejection from the welding zone the following are pointed out: unstable metal transfer, when the power which separetes a drop from the electrode is directed away from the bath and a drop is ejected beyond its bounds; local explosive gases expelling in the volume of metal of welded bath caused by metallurgical reactions; destruction of molten metal bridge formed during metal transfer with the short circuits as a result of a sharp increase in current density under narrowing of the tie plate (pinch effect). It is possible to increase the MAG-welding efficiency by controlling the electrode metal mass transfer at the reduction of discharge coefficient on spattering by influence of longitudinal magnetic field on the arc. The paper identifies a range of longitudinal magnetic field frequencies and induction which provide the discharge coefficient reduction of the electrode metal; it has also been found the characteristics of their mutual influence on electrode metal mass transfer process; mathematical models correlating the frequency and induction of longitudinal magnetic field length with loss coefficient of electrode metal on spattering are presented; technological recommendations, the implementation of which will allow to improve the efficiency of MAG-welding in industrial environments, are given. References [1] Potap’yevsky A.G. Spattering at welding CO2 with a wire Sv-08G2S A.G.Potapevsky, V.Ya.Lavrischev Automatic welding 1972 no 8 p 39-42. [2] Fedko V.T., Tomas K.I. and Sapozhkov S.B., Protecting the surfaces welded components against molten metal splashes in CO2 welding// Welding International. 1998. no 1. S. 58-62/ [3] Chinakhov D A Calculation of Gas-dynamic Impact of the Active Shielding Gas on the Electrode Metal Drop in Gas Jet Shielded Welding Applied Mechanics and Materials Vol. 379 (2013) p 188-194 [4] Chinakhov D A Zuev A V Filimonenko A G Gas-dynamic Impact of a Shielding Gas Jet on the Drop Transfer When Welding with a Consumable Electrode Advanced Materials Research Vol. 1040 (2014) p 850-853 [5] Nosov D G Maltsev V V The influence of magnetic fields by a melting rate of wire for arc surfacing under flux Applied Mechanics and Materials Vol. 379 (2013) p 178-182. [6] Razmyshlyaev A D Magnetic control of rollers and weld formation in arc surfcing and welding A D Razmyshlyaev, M V Mironov Mariupol: Publishing Priazovsky State Technical University 2009 p 242/ [7] Nosov D.G. Power source of electromagnetic system for arc welding using external magnetic fields control D. G. Nosov Welder 2010 no 4 p 18-19. [8] Nosov D.G. The influence of the frequency of the external electromagnetic field on the geometric parameters of the roller submerged under flux / D.G. Nosov, VV Klimenko, V.V. Maltsev / Collection of scientific works of DSTU: (technical sciences) / Dneprodzerzhinsk: DSTU [9] Peremitko V.V. Influenza sag parti del telaio indossare macchine stradali / V.V.Peremit`ko, V.D.Kuznetsov, I.O.Cherednyk // Italian Science Review. – 2014. – no 8 (17). – PP. 93– 96. [10] Patskevitch I R Longitudinal magnetic field influence on the surfacing and transfer of electrode metal I.R.Paskevich, A.V.Zernov, V.S.Serafimov Welding production 1973 no 7 pp 8-10.

Authors and Affiliations

Д. Г. Носов, В. В. Перемітько

Keywords

Related Articles

Математичне моделювання поточного стану проектів та практична реалізація моніторингових досліджень

MATHEMATICAL MODELING OF THE CURRENT STATE OF THE PROJECT AND IMPLEMENTATION OF MONITORING STUDIES Grigorenko V.Y., Kadilnikova Т.М. , Kadilnikova А.V. Abstract Currently, system management and project activities find t...

Асимптотичний аналіз нестаціонарних систем автоматичного ке-рування

ASYMPTOTIC ANALYSIS OF NON-STATIONARY OF AUTOMATIC CONTROL SYSTEMS Rashevs’kyi M.O. Abstract Models of non-stationary automatic control systems are differential equations with variable coefficients. Such equations do n...

Анализ термодинамических характеристик многокомпонентного аморфного сплава на основе железа: экспериментальное исследование и теоретическая интерпрета-ция

ANALYSIS OF THERMODYNAMIC CHARACTERISTICS OF A MULTICOMPONENT AMORPHOUS IRON-BASE ALLOY: EXPERIMENTAL STUDY AND THEORETICAL INTERPRETATION Goranskiy G.G., Khina B.B., Sereda B.P. Abstract The paper is devoted to the the...

Використання методу експертних оцінок Дельфі у задачах прийняття рішень

Considered one of the methods of peer review, which allows on the basis of the existing data or predict the behavior of the study area for quite long periods of time. Also given an example of using this method to solve a...

Download PDF file
  • EP ID EP277106
  • DOI -
  • Views 44
  • Downloads 0

How To Cite

Д. Г. Носов, В. В. Перемітько (2017). Вплив частоти та індукції поздовжнього магнітного поля на втрати електродного металу та його розбризкування при MAG-зварюванні. Математичне моделювання, 1(1), 66-69. https://europub.co.uk/articles/-A-277106