Analysis and Simulation of Diffraction from Metamaterials Structures by Using of Surface Integral Equations and Multi-Level Fast Multipole Method (MLFMM) and Comparison with Moment Method
Journal Title: Applied Electromagnetics - Year 2022, Vol 10, Issue 2
Abstract
Metamaterial is defined as an artificial, macroscopic, and effectively homogeneous structure (with an average unit cell size much smaller than the guide wavelength). In the electromagnetic literature, the response of a system to an electric or magnetic field is largely determined by the characteristics of the materials in question. Two examples of these microscopic properties are the electric permittivity and magnetic permeability coefficients, both of which are positive in ordinary materials. By arranging an array of metal wires, a negative electric permittivity can be obtained, and by arranging an array of periodic split ring resonator structures, a negative magnetic permeability coefficient can be obtained. To model metamaterial structures, integral equations of electric field or magnetic field are used, which can be studied based on the numerical method of moment. One of the advantages of this method is that it only segregates the source, although the required memory increases in proportion to the size of the geometry of the structure. To solve this problem, today, alternative methods such as fast multipole method (single level and multi-level) are used, which in addition to the source, the basic functions and observation points are also segmented. In this paper, using surface integral equations and multi-level fast multipole method, the diffraction and calculation of scattering fields of some metamaterial surfaces are investigated and the importance of this method compared to the direct moment method is greatly reduced in the computation time, approximately 75%.
Authors and Affiliations
Farzad Mohajeri, Mohammad Ebrahim Shariat
Examination and simulation of the electromagnetic impact on electronic components
Sensors are one of the most vulnerable electronic devices to high-power electromagnetic waves such as (HPEM), (UWB), and (EMP). To achieve such effects, a model of the effect of electromagnetic interference has been prop...
Design and construction of high frequency transformers based on resonance converter
High-frequency power transformers are available in electronic power converters for many applications such as power transmission, renewable energy systems, and power supplies. Magnetic materials production technologies su...
Optimized Design to reduce cogging torque in flux reversal motor
Flux Reversal Machine (FRM) integrates the features of permanent magnet synchronous machines and switch reluctance machines due to the presence of permanent magnets in the stator tooth and the robust structure of the rot...
Design and Simulation of X-Band Microstrip Butler Matrix for Feeding the Narrow Beam-Width Phase Array Antenna
Flight systems, have extensive applications in various scientific, industrial, and commercial fields. One component utilized in flight systems' structure is radar. In various applications of these systems, it is required...
Theoretical study of the effect of the layer thickness on the sensitivity of tapered fiber optic sensors
In this paper, a comprehensive study was performed to investigate the effect of the absorbent layer thickness on the tapered fiber sensor sensitivity, which leads to the highest sensitivity for the sensor. For this purpo...