Analysis of Influence of Self-similarity to a Network Node
Journal Title: Jaunųjų mokslininkų darbai - Year 2010, Vol 28, Issue 3
Abstract
The article deals with the segment of distance studies’ server network characterised by self-similarity and fractality. The influence of network flow’s characteristics on throughput of a network node is assessed. Application of MMm (MM1) network model for serving distance studies’ servers is analysed. The packet of modelling of a network flow is worked out and prepared for operation; by using it, the self-similar and Poisson type network flows were analysed, influence of different flow’s characteristics on efficiency of a serving network node was assessed. The packet for network flow modelling consists of the sub-system of simulation of a network flow, the subsystem of modelling of a network node, the sub-system of control and the sub-system of input/ output. 6,776 time series were generated for the research, by indicating different queue parameters. In order to assess the influence of characteristics of the served flow in a network node on efficiency of service for a network node, every time queue was served several times with different parameters of queue length and service discipline. The results of 74,536 queues were obtained. The linear regression was applied for analysis of the results, when independent variables were as follows: intensity of network flow, the size of the network node’s buffer and the index of stability of a time queue characterising its self-similarity. The values of dependent variables (probability of queue service, probability of buffer filling and probability of packet loss) were calculated while presenting the results of queue service. While assessing results of the regressive analysis, the intensity of the flow was regarded. It was found out that when intensity of the network flow increases, the self-similar flow is being stably served, and probability of packet loss in Poisson type network flow increases. Probability of serving a self-similar flow increases when a service queue of a network node increases, and the buffer length of Poisson type time series makes no influence on quality of service. The discipline of service of time series LIFO ensures better quality of service when the incoming flow is of Poisson type and the serviced one – self-similar. When the stability index of a self-similar queue increases, the probability of service increases. A stronger dependence is observed when the incoming and served flows are self-similar.
Authors and Affiliations
Liudvikas Kaklauskas, Leonidas Sakalauskas
Lėvens upės taršos tyrimas
Darbo tikslas – ištirti Lėvens upės taršą. Pateikiamos žinios apie šios upės būklę. Apskaičiuoti teršalų kiekiai, kurie atplukdomi į Lėvens upę iš Svalios upės. Lėvens upėje pasirinkta 10 taškų, kuriuose buvo imami vande...
Parametric Estimation of the Multivariate t–Skew Distribution
The present paper describes the Monte – Carlo Markov Chain (MCMC) method for estimation of skew t – distribution. The density of skew t – distribution is obtained through a multivariate integral, using representation of...
KINIJOS LIAUDIES BANKO PINIGŲ POLITIKOS POVEIKIS AKCIJŲ RINKOS GRĄŽAI
Išsivysčiusiose šalyse tarp centrinių bankų reguliuojamų palūkanų normų ir akcijų rinkų dažniausiai egzistuoja neigiamas ir statistiškai reikšmingas ryšys. Tačiau šis ryšys gali pasikeisti ne tik nuo taikomų skirtingų pi...
Tarmių ir bendrinės kalbos vartojimas centrinėje Slovakijos dalyje
Šio straipsnio tikslas – remiantis lietuvių dialektologų sudaryta tarmių ir bendrinės kalbos vartosenos tyrimo anketa (www.tarmes.lt, Aliūkaitė, Kačiuškienė ir kt., 2013) ištirti kalbinę situaciją Slovakijoje. Tyrimui i...
Equipment Maintenance Using IR Thermography
This work attempts to show some case studies through Infrared thermography involvements in the industrial maintenance. Initially critical points of the essential or very important machines and electrical circulation unit...