Analytical Method of Profiling Axial-Radial Compressor Impellers
Journal Title: Проблеми машинобудування - Year 2018, Vol 21, Issue 4
Abstract
A new analytical method for constructing axial-radial compressor impellers with compound lean leading and trailing edges is proposed allowing us to describe a wide class of flow paths based on a limited (small) number of parameterized quantities. With the aid of this method there has been designed a new flow path with a typical axial radial impeller for turbo-expander aggregate compressors with flow coefficients in the range from 0.03 to 0.06. To test the method, a numerical study of spatial viscous flows was carried out in the existing and new modifications of the flow path for the typical axial-radial compressor of a low-temperature turbo-expander aggregate. To do that, the IPMFlow software package was used, which is the development of the FlowER and FlowER-U programs. The computational grid consisted of over 600 thousand cells. The developed impeller has a substantially spatial shape, with the leading edges having compound circumferential lean. The new design is shown to have a more favorable flow structure in which there are almost no flow separations. This is ensured due to the spatial shape of the new impeller, including compound radial lean of the leading edges. This form contributes to “pressing” the flow to the peripheral contour in the region of the flow path turn from the axial direction to the radial one, consequently preventing the occurrence of separable vortices. Due to the absence of separable formations in the nominal mode, and thanks to relatively insignificant separations in the off-design mode, there is provided a high level of aerodynamic perfection (high efficiency) of a new typical compressor in the whole range of turbo-detander aggregate operating modes. Thus, in the nominal mode, the compressor efficiency is 6% higher as compared with that of the prototype. The compressor impeller has been introduced in the turbo-detander aggregates for complex gas processing facilities at the extractive enterprises of gas-condensate deposits of Uzbekistan.
Authors and Affiliations
Andrii V. Rusanov, Roman A. Rusanov, Natalia V. Pashchenko, Maryna O. Chuhai
Roller Forming Unit Dynamic Analysis with Energy Balanced Drive Dissipative Properties Taken into Account
In order to increase the reliability and durability of a roller forming unit with an energy-balanced drive, loads in the unit structure elements and drive are calculated, dependencies for identifying efforts in the conne...
New Generation 'Block-Modular' Condenser for K-1000-60 / 1500-2 Turbine Units in Zaporozhskaya NPP
<p class="a"><span lang="EN-US">The condensing devices of steam turbine plants considerably determine the reliable and economical operation of NPP power units. In some cases, breakdowns in their operation result in a for...
Chaotic Oscillations of a Kinematically Excited Flat Shell During Geometrically Non-linear Deformation
We study the forced oscillations of a cantilevered flat shell of constant curvature. These movements are excited by a kinematic periodic embedding motion. To describe geometrically non-linear deformation, the non-linear...
Stressed State of a Hollow Cylinder with a System of Cracks under Longitudinal Shear Harmonic Oscillations
This paper solves the problem of determining the stress state near cracks in an infinite hollow cylinder of arbitrary cross section during longitudinal shear oscillations. We propose an approach that allows us to separat...
Design Forecasting of Thermal Strength and Resource of Steam Turbine structural Components
Effective and reliable operation of power units is closely connected with the provision of the thermal strength and durability of their elements and components. The needs of the modern energy market lead to the operation...