AUTONOMOUS EMOTION RECOGNITION SYSTEM: APPROACHES FOR DATA MINING

Journal Title: VADYBA - Year 2009, Vol 15, Issue 2

Abstract

The detection of emotion is becoming an increasingly important field for human-computer interaction as the advantages emotion recognition offer become more apparent and realisable. However there are still many issues (data filtering, parameter‘s extraction, data preprocessing, interpreting, adaptive control) in developing adaptive systems proeviding user-friendly e-health and e-social care for people with movement disabilities services based on physiological parameter’s recognition. Such systems include different intellectual components for control and monitoring of sensors by supporting multi-agent activities and, in accordance to the recognition of certain situations, integrate the possibilities to affect and control the devices of disable persons. So this paper presents principle of modelling of an autonomous emotion recognition system to creating of an intelligent e-health care environment. The model is based on remote research of human emotional states and remote bio robots intelligent control with ATmega8/16/32 microcontrollers. The proposed model uses skin conductance signal to recognize human emotional state i.e. the main process of this system is based on exploratory’s analog signal transformation to one of discreete emotional state (surprise, happy, calmness, sleepiness, sad, disgust, anger and fear). Using Firebird database to store physiological parameters makes proposed model more universal and extended in possibilities. There are described signal transformations, filtering, data recording methods using Atmel AVR microcontrollers, digital oscilloscope and R statistical environment. There are proposed self organizing maps (SOM) and multilayer perceptron (MLP) combinations for emotional state recognition and improved MLP training approach, which increases the learning rate and classification accuracy, in this paper as well.

Authors and Affiliations

Darius Drungilas, Antanas Andrius Bielskis

Keywords

Related Articles

LIABILITY AND COMPENSATION FOR ACCIDENTS AT WORK

The number of accidents at work per employee, employed by the employment contract, is decreasing while the number of work accidents for police officers is increasing, but the downward trend in compensation reimbursement...

INTERNET OF THINGS AND CUSTOMER BENEFITS

Although internet of things (IoT) is already being used successfully and intensively in the business-to-business (B2B) sector and can be found under the term Industry 4.0 in particular, beneficial innovations in the busi...

ANALYSIS OF GRANULARITY WITHIN GENERATIVE LEARNING OBJECTS TO SUPPORT REUSABILITY

Reusability of the learning objects (LOs) and its usefulness is the main engine for the LOs theory development in the e-learning domain. We discuss the granularity problems which are directly related with LO reusability...

INDIVIDUALIOS ĮMONĖS STATUSAS LIETUVOS RESPUBLIKOS TEISINĖJE SISTEMOJE

Siekiant sumažinti su individualių įmonių steigimu ir jų registravimu susijusią administracinę naštą bei pagerinti verslo sąlygas, vykdoma individualių įmonių veiklos teisinio reguliavimo korekcija. Pakeistas ir papildyt...

NELEGALUS AKCIZINIŲ PREKIŲ IMPORTAS IR JO ĮTAKA LIETUVOS BIUDŽETUI

Nelegalus importas vykdomas dėl psichologinių paskatų, moralinių nuoskaudų, vidinių protestų prieš esamą santvarką, bedarbystę ir neturtą. Kontrabandos atveju valstybė nukenčia todėl, kad į šalį yr...

Download PDF file
  • EP ID EP460611
  • DOI -
  • Views 58
  • Downloads 0

How To Cite

Darius Drungilas, Antanas Andrius Bielskis (2009). AUTONOMOUS EMOTION RECOGNITION SYSTEM: APPROACHES FOR DATA MINING. VADYBA, 15(2), 179-185. https://europub.co.uk/articles/-A-460611