Bioprinting with pre-cultured cellular constructs towards tissue engineering of hierarchical tissues
Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1
Abstract
The fabrication of physiologically active tissue constructs from various tissue elements are vital for establishing integrated bioprinting and transfer printing techniques as vital tools for biomedical research. Physiologically functional tissues are hierarchically constructed from a variety of tissue subunits with different feature sizes and topographies. For example, skeletal muscles are composed of many muscle bundles, muscle fibers, and muscle cells respectively. The fundamental constituents of all types of muscle tissues include various sized blood vessels, and vascular related cells. Nature has designed the direction of all the aforementioned components to have unidirectional alignment, so that muscle contractions can effectively generate the mechanical functions. In this study, we demonstrate a promising approach to fabricating such hierarchical tissues by applying bioprinting and a transfer patterning technique. Linear-patterned smooth muscle cells were obtained by culturing on the surface patterned discs, before being transferred onto the Matrigel substrate. The fiber-like tissues structures were successfully formed on the substrate after a few days of culturing; these are partially aligned smooth muscle cells. Additionally, stacked structures were also successfully fabricated using laminating printing technique. Our results indicate that bioprinting and transfer printing strategy of pre-cultured aligned muscular fiber-like tissues is very promising method to assemble tissue elements for biofabrication of hierarchical tissues.
Authors and Affiliations
Makoto Nakamura, Tanveer A. Mir, Kenichi Arai, Satoru Ito, Toshiko Yoshida, Shintaroh Iwanaga, Hiromi Kitano, Chizuka Obara, Toshio Nikaido
Designs and applications of electrohydrodynamic 3D printing
This paper mainly reviews the designs of electrohydrodynamic (EHD) inkjet printing machine and related applications. The review introduces the features of EHD printing and its possible research directions. Significant pr...
Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing
Multimaterials deposition, a distinct advantage in bioprinting, overcomes material’s limitation in hydrogel-based bioprinting. Multimaterials are deposited in a build/support configuration to improve the structural integ...
A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering
It is critical to develop a fabrication technology for precisely controlling an interconnected porous structure of scaffolds to mimic the native bone microenvironment. In this work, a novel combined process of additive m...
Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as...
Patterning of tissue spheroids biofabricated from human fibroblasts on the surface of electrospun polyurethane matrix using 3D bioprinter
Organ printing is a computer-aided additive biofabrication of functional three-dimensional human tissue and organ constructs according to digital model using the tissue spheroids as building blocks. The fundamental biolo...