Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique
Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1
Abstract
Bioprinting is a layer-by-layer additive fabrication technique for making three-dimensional (3D) tissue and organ constructs using biological products. The capability to fabricate 3D tubular structure in free-form or vertical configuration is the first step towards the possibility of organ printing in three dimensions. In this study, alginate-based tubular structures of varying viscosity were printed vertically using multi-nozzle extrusion-based technique. Manufacturing challenges associated with the vertical printing configurations are also discussed here. We have also proposed measurable parameters to quantify the quality of printing for systematic investigation in bioprinting. This study lays a foundation for the successful fabrication of viable 3D tubular constructs.
Authors and Affiliations
Edgar Y. S. Tan, Wai Yee Yeong
The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold
With the development of three-dimensional (3D) printing, many commercial 3D printing materials have been applied in the fields of biomedicine and medical. MED610 is a clear, biocompatible PolyJet material that is medical...
Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study
For more than a decade, living cells and biomaterials (typically hydrogels) are printed via laser-assisted bioprinting. Often, a thin metal layer is applied as laser-absorbing material called dynamic release layer (DRL)....
Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting
Alginate is a biocompatible material suitable for biomedical applications, which can be processed under mild conditions on irradiation. This paper investigates the preparation and the rheological behavior of different pr...
High-precision three-dimensional inkjet technology for live cell bioprinting
In recent years, bioprinting has emerged as a promising technology for the construction of three-dimensional (3D) tissues to be used in regenerative medicine or in vitro screening applications. In the present study, we p...
Bioprinting with pre-cultured cellular constructs towards tissue engineering of hierarchical tissues
The fabrication of physiologically active tissue constructs from various tissue elements are vital for establishing integrated bioprinting and transfer printing techniques as vital tools for biomedical research. Physiolo...