Ceftriaxone Protects Against Blood-Brain Barrier Disruption and Improves Neurological Outcomes in a Male Rat Model of Traumatic Brain Injury: A Behavioral and Histological Study
Journal Title: The 1st Annual Meeting of Georgian Center for Neuroscience Research - Year 2020, Vol 2, Issue 20
Abstract
Introduction: β-lactam antibiotics, particularly ceftriaxone (CTX( which exhibits excellent blood–brain barrier penetration, are potent stimulators of functional GLT-1 (EAAT2) expression in rodents as well as in human cultured astrocytes by yet incompletely known mechanisms. β -lactam neuroprotective capacity is supported by various articles but imperfect mechanisms known, Therefore, in this study, we aimed to investigate the neuroprotective effects of ceftriaxone on brain trauma with a histological approach. Materials and methods: Wistar rats were intraperitoneally received ceftriaxone (400,200,100 mg/kg) after induction of a brain injury. However, before induction of brain injury, animals were anesthetized and endotrachael intubation was often necessary before surgery. In the Marmarou method, a stroke was induced and medication was injected half an hour after a stroke. VCS of the animal was recorded at (D1-D3) after the traumatic brain injury. Beam Walk and Beam balance tests were taken from the animal at that time. The level of permeability of the blood-brain barrier was checked by Evans Blue dye. After 72 hours, the animal was killed and its head was separated and the brain was removed and fixed in formalin 10% to be used for H&E staining. Results: Our findings did not conclude that traumatic brain injury causes brain edema and the blood brain barrier damage and changes in the neurological and balance scores of animals. However, ceftriaxone at doses of 100 and 200 mg / kg could eliminate these disorders compared to control group (p <0.001). Of course, these changes were more significant at a dose of 100 mg. Edema and apoptosis in brain tissue also improved with ceftriaxone 100. Discussion: The results of this study showed that using ceftriaxone in 100 and 200 mg / kg doses can prevent further damage to the brain and improve neurological scores, BW, Vestibular motor function, cerebral edema, postoperative vascular permeability after Traumatic brain injury.
Authors and Affiliations
Maboud Parniyan, Amir Hossein Esfahani, Arvin Ebrahimi, Ali Siahposht-Khachaki
The Effectiveness of Virtual Reality Technology on Social Anxiety and Fear of Speech
The present study was conducted to investigate the effectiveness of virtual reality technology on social anxiety and fear of speech. The study population consisted of all adolescents aged 12-15 years in Tehran. The meth...
Effects of Quercetin Loaded Magnetic Nanoparticles on Electrophysiological and Behavioural Disturbances in the Animal Models of Epilepsy
Epilepsy is one of the most common neurological disorder, characterized by repetitive seizures and various mental health problems. Currently more than 30% of epilepsy cases are resistant to the treatment. It is believed...
How would Dexmedetomidine have Protective Effects on the Neurological Scores, Brain Edema and Brain-Blood Barrier Post to Serious Traumatic Brain Damage in Male Rats? (The Possible Role of MMP-9)
Introduction: Dexmedetomidine DEX is known as a α2-adrenergic receptor agonist. It is used as a short-acting analgesic drug. In this study, we investigated the effects of neural protection of the DEX after induction of...
The Comparison of Brain Behavioral Activation or Inhibition Systems and Cognitive Functions in Addict & Normal Women
Introduction: addiction is considered as chronic brain disease that results in severe behavioral and cognitive disorders. Various studies indicate cognitive and behavioral deficits in men, and few studies have examined...
The Role of Nitric Oxide (NO) in Shell of Left Nucleu Accumbense on Learning and Memory in Stress Condition Induced by Electrical Foot Shock in Male Wistar Rats
Introduction: Any extrinsic or intrinsic stimulus that evokes a biological response is known as stress. In this case, the body's homeostatic mechanisms are activated to compensate for the conditions created with prolong...