Computer 3D modelling of chip geometry and force field in the hobbing process

Abstract

Nowadays, the main method of machining the gears with a module in the range 1–25 mm, which are integral parts of modern machines, remains hobbing. Operations of the toothed crown processing determine the efficiency of the entire technological process of manufacturing gears. Thus, the time expenses and performance, the cost of the gears, and their final quality depend to a large extent on these indicators in operations of hobbing. Considering the importance of this process for mechanical engineering, considerable attention of scientists is devoted to its modelling. Chip parameters are the key source of information required for comprehensive and complete analysis of the hobbing process. Despite the large number of publications devoted to this problem, there is still no methodology for adequate reproduction of these parameters. Known methods and models are characterized by significant simplifications and do not reproduce completely the kinematics of this complex process. This article presents a new approach to graphical modelling of the chip parameters in the hobbing process, which is based on the analysis and synthesis of elementary kinematic motions, related to unit motions and displacements of the hob cutting elements in the process of removing the metal in the gap between the teeth of the processed gear. The algorithm for forming the instantaneous transitional surface between the gear teeth and the three-dimensional (3D) space geometry of the chips on all active teeth of the tool is implemented in the graphic system AutoCAD. The article presents the results of computer modelling of chips in the climb and up-cut hobbing with Archimedean and convoluted hobs. Complete information on the geometric structure of the cut layers provides the basis for complex and system modelling of this process at the level of separate racks, teeth and edge of a hob. In combination with the data on the intensity of plastic deformation, stresses and temperature obtained for the corresponding conditions of hobbing in the Deform system, data on the parameters of the cut layers create opportunities for predicting the heating and wear of cutting elements of a hob, their loading, strength of protective coatings, transient processes of the cutting force and temperature, designing of optimal technological processes of hobbing and management of these processes.

Authors and Affiliations

Ihor Hrytsay, Vladyslav Topchij, Andriy Kuk

Keywords

Related Articles

Hydraulic pump based on the rolamite mechanism

When designing pumping equipment the question arises not only of the improvement of the existing types but also the search for a new principle of uniting the supporting elements with the elements of the formation of the...

Analysis of Modern Investigations of Vibratory Processes of Wheeled Vehicles

The history and modern tendencies of development of cushioning systems are analyzed in this paper. The development of mathematical modelling as a process is denoted, the methods and means are described and the necessary...

Structure and wear resistance of aluminium alloys coated with surface layer laser-modified by silicon carbide

Modern approaches to ensuring the necessary characteristics of surface of a material with the aim to improve economic and technological characteristics of the structures are considered in this paper. It is shown that alu...

Thermal Processing of ZR-1 %NB Tube in Oxygen- and Nitrogen Containing Gaseous Mediums

Zirconium alloys have unique properties (physical, mechanical, radiation) is therefore are an essential structural material for nuclear energy. A feature of these alloys is high affinity to the interstitial elements (O,...

Substantiation of the Process of Vertical Transportation of Piece Loads

The urgent problem of automatization of the process of products transportation with a help of vertical chutes under the influence of gravitational forces using elastic elements is considered. The interaction between the...

Download PDF file
  • EP ID EP499318
  • DOI -
  • Views 124
  • Downloads 0

How To Cite

Ihor Hrytsay, Vladyslav Topchij, Andriy Kuk (2018). Computer 3D modelling of chip geometry and force field in the hobbing process. Український журнал із машинобудування і матеріалознавства, 4(2), 68-79. https://europub.co.uk/articles/-A-499318