Design of an Optimized Robust Deadbeat Controller for Roll Motion in Tail-Sitter VTOL UAVs
Journal Title: Journal of Intelligent Systems and Control - Year 2024, Vol 3, Issue 1
Abstract
Unmanned Aerial Vehicles (UAVs), have recently sparked attention due to its versatility in a wide range of real-life uses. They require to be controlled so as to conduct different operations and widen their typical roles. This study proposes an optimal robust deadbeat controller for the roll angle motion of tail-sitter vertically take-off and land vehicles, taking into consideration the systems’ intrinsic sensitivity to outside influences and fluctuation of their dynamics. Primarily, several assumptions are used to develop an appropriate transfer function that reflects the system physical attributes. The suggested controller is then formed in two sections: the first section addresses the nominal system’s unstable dynamics, and the second element imposes the desired deadbeat performance and robustness. The control system variables are optimized using the creative and efficient Incomprehensible but Time-Intelligible Logics optimization technique, ensuring that the specified robustness demand is satisfied correctly. Finally, simulation is used to evaluate the developed controller effectiveness, revealing beneficial stability and performance indicators for both nominal and uncertain regulated system featuring uniform, bounded, and feasible closed-loop outputs. The control unit performs well, with a rising time of 0.0965 seconds, a settling time of 0.1134 seconds, and an overshoot of 0.167%.
Authors and Affiliations
Ali H. Mhmood
Active Disturbance Rejection Control Approach for Double Pendulum Cranes with Variable Rope Lengths
The overhead crane is a typical underactuated system with complicated dynamics and strong couplings. It is widely employed to transport heavy cargoes in many industrial fields. Due to the complexity of working environmen...
Robust Speed Control in Nonlinear Electric Vehicles Using H-Infinity Control and the LMI Approach
In this investigation, the robust H∞ control of nonlinear electric vehicles (EVs), powered by permanent magnet synchronous motors (PMSM), was examined. Emphasis was placed on enhancing the accuracy and robustness of the...
Computational Fluid Dynamics Analysis of Vertical Axis Wind Turbine Heights for Enhanced Hydrogen Production in Urban Environments
A significant surge in the installation of Vertical Axis Wind Turbines (VAWTs) in areas of spatial constraints and fluctuating wind directions has been observed, attributable to the omission of a yaw mechanism, which oth...
New 5D Hyperchaotic System Derived from the Sprott C System: Properties and Anti Synchronization
This study introduces a new ten-term 5-D hyperchaotic system, derived from the 3-D Sprott C system. The proposed system has coexisting two attractors: the self-excited and hidden attractors. This system exhibits a rich a...
Comparative Examination of Control Strategies in DC-DC Power Converters: A Traditional and Artificial Intelligence Perspective
This study undertakes a comprehensive review of control techniques applicable to DC-DC power converters, categorized into Traditional Control (TC) methods and those based on Artificial Intelligence (AI). Succinct descrip...