Enhancement of Pool Boiling Heat Transfer Through Micro-Finned Surfaces and Al2O3-Water Nanofluids: A Numerical Study

Journal Title: Journal of Sustainability for Energy - Year 2024, Vol 3, Issue 1

Abstract

Among the various heat transfer mechanisms, boiling heat transfer is distinguished by its capacity to dissipate substantial heat via the latent heat of vaporization with minimal temperature differentials. This phenomenon is pivotal across a range of industrial applications, including the cooling of macro- and micro-electronic devices, boiler tubes in power generation plants, evaporators in refrigeration systems, and nuclear reactors, where the nucleate pool boiling regime and two-phase flow are of particular interest. The drive to enhance heat exchange systems’ efficiency has consistently focused on minimizing heat loss through system miniaturization. This investigation employs numerical simulations via the Fluent software to elucidate the heat transfer and cooling processes facilitated by nanofluids with varied concentrations on differently shaped finned surfaces, alongside the utilization of water and ethylene glycol as base fluids. Specifically, the thermal performance of Al2O3-water nanofluids at different concentrations (0, 0.3, 0.6, 1, 1.2, and 1.4 percent by volume) was scrutinized under boiling conditions across surfaces endowed with circular, triangular, and square fins. The study confirmed that the incorporation of Al2O3 nanoparticles into the water base fluid not only enhances its thermal conductivity but, in conjunction with micro-finned surfaces, also augments the available surface area, thereby improving wettability. These modifications collectively contribute to a marked increase in the heat transfer coefficient (HTC) and a reduction in the critical heat flux (CHF). Furthermore, it was observed that at a 0.3% volume concentration of Al2O3 with square fins, the temperature span extends from 373.1 to 383.1 K. Nonetheless, the long-term stability and efficacy of nanofluids are subject to potential impacts from nanoparticle aggregation and sedimentation. This study underlines the synergistic effect of nanoparticle-enhanced fluids and micro-finned surface architectures in bolstering pool boiling heat transfer, signifying a promising avenue for thermal management advancements in various industrial domains.

Authors and Affiliations

Hamzah Hadi Fadhl, Laith Jaafer Habeeb

Keywords

Related Articles

Enhancing Energy Efficiency in IoT-WSN Systems via a Hybrid Crow Search and Firefly Algorithm

In the realm of enterprise technology, Internet of Things (IoT)-based wireless devices have witnessed significant advancements, enabling seamless interactions among machines, sensors, and physical objects. A critical com...

Enhancement of Building Thermal Performance: A Comparative Analysis of Integrated Solar Chimney and Geothermal Systems

A comparative investigation is conducted, employing Computational Fluid Dynamics (CFD) simulations to study two distinct room space configurations: one featuring a solar chimney and another integrating both a solar chimn...

Enhancing the Efficiency of Air Conditioning Systems in High-Temperature Climates Through Direct Evaporative Cooling

This study aims to develop energy-efficient and environmentally friendly cooling solutions that are both effective and adaptable to various climates and structural forms. By leveraging computational fluid dynamics (CFD)...

Enhancing Heat Transfer in Heating Pipes with Fe3O4 Nanofluid under Magnetic Fields: A Numerical Study

In this investigation, the enhancement of heat transfer in pipes facilitated by Fe3O4-distilled water nanofluid under the influence of magnetic fields is comprehensively studied. The research primarily focuses on examini...

Enhanced Thermal Performance of Shell and Tueb Heat Exchangers Using TiO2/Water Nanofluids: An SST Turbulence Model Analysis

Over recent years, nanotechnology’s landscape has witnessed transformative advancements, heralding new research opportunities in scientific and engineering domains. A notable innovation in this evolution is the developme...

Download PDF file
  • EP ID EP744293
  • DOI https://doi.org/10.56578/jse030103
  • Views 9
  • Downloads 1

How To Cite

Hamzah Hadi Fadhl, Laith Jaafer Habeeb (2024). Enhancement of Pool Boiling Heat Transfer Through Micro-Finned Surfaces and Al2O3-Water Nanofluids: A Numerical Study. Journal of Sustainability for Energy, 3(1), -. https://europub.co.uk/articles/-A-744293