Estimation of Dosimetric Parameters based on KNR and KNCSF Correction Factors for Small Field Radiation Therapy at 6 and 18 MV Linac Energies using Monte Carlo Simulation Methods

Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 1

Abstract

Background: Estimating dosimetric parameters for small fields under non-reference conditions leads to significant errors if done based on conventional protocols used for large fields in reference conditions. Hence, further correction factors have been introduced to take into account the influence of spectral quality changes when various detectors are used in non-reference conditions at different depths and field sizes. Objective: Determining correction factors (KNR and KNCSF) recommended recently for small field dosimetry formalism by American Association of Physicists in Medicine (AAPM) for different detectors at 6 and 18 MV photon beams. Methods: EGSnrc Monte Carlo code was used to calculate the doses measured with different detectors located in a slab phantom and the recommended KNR and KNCSF correction factors for various circular small field sizes ranging from 5-30 mm diameters. KNR and KNCSF correction factors were determined for different active detectors (a pinpoint chamber, EDP-20 and EDP-10 diodes) in a homogeneous phantom irradiated to 6 and 18 MV photon beams of a Varian linac (2100C/D). Results: KNR correction factor estimated for the highest small circular field size of 30 mm diameter for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.993, 1.020 and 1.054; and 0.992, 1.054 and 1.005 for the 6 and 18 MV beams, respectively. The KNCSF correction factor estimated for the lowest circular field size of 5 mm for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.994, 1.023, and 1.040; and 1.000, 1.014, and 1.022 for the 6 and 18 MV photon beams, respectively. Conclusion: Comparing the results obtained for the detectors used in this study reveals that the unshielded diodes (EDP-20 and EDP-10) can confidently be recommended for small field dosimetry as their correction factors (KNR and KNCSF) was close to 1.0 for all small field sizes investigated and are mainly independent from the electron beam spot size.

Authors and Affiliations

S. A. Rahimi, B. Hashemi, S. R. Mahdavi

Keywords

Related Articles

Uncertainty Analysis in MRI-based Polymer Gel Dosimetry

Background: Polymer gel dosimeters combined with magnetic resonance imaging (MRI) can be used for dose verification of advanced radiation therapy techniques. However, the uncertainty of dose map measured by gel dosimeter...

Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry

Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma r...

Applications of Inertial Navigation Systems in Medical Engineering

Inertial navigation systems are of the most important and practical systems in determining the velocity, position and attitude of the vehicles and different equipment. In these systems, three accelerometers and three gyr...

Editorial

there is no Abstract.

Solver Device for Powdery Drugs

Pharmacotherapy is a major treatment method in healthcare centers, and the injection of powdered drugs is among common pharmacotherapy techniques. Medication errors and nosocomial infections are among major health issues...

Download PDF file
  • EP ID EP613244
  • DOI -
  • Views 112
  • Downloads 0

How To Cite

S. A. Rahimi, B. Hashemi, S. R. Mahdavi (2019). Estimation of Dosimetric Parameters based on KNR and KNCSF Correction Factors for Small Field Radiation Therapy at 6 and 18 MV Linac Energies using Monte Carlo Simulation Methods. Journal of Biomedical Physics and Engineering, 9(1), 37-50. https://europub.co.uk/articles/-A-613244