Friction Behavior Produced in The Course of a Contact Enabled Between Composite Materials and Eco-Friendly Soles Prototypes Made of Elastomeric Material with Regard to Ice-Covered Surface
Journal Title: Tribology in Industry - Year 2019, Vol 41, Issue 1
Abstract
The subject matter of the present research constitutes a study of the technique of friction between samples and prototypes of soles made of composite materials comprising natural rubber characterized with ingredients originating from renewable sources produced in the course of their contact with an ice surface. Methods and devices were developed in order to investigate the static and dynamic friction force and the change with regard to frictional force in the event of contact with regard to three varieties of forms of ice: melting ice (ice with a layer of water on it, temperature: 0 to 1 °C), wet ice (temperature: - 4° -5° C) and dry ice (temperature: - 10° - 12° C). Coefficients of static and dynamic friction, along with change of the friction coefficient were obtained for 14 types of elastomers and ingredients from renewable sources - natural rubber, silicon dioxide extracted from the process of burning rice husks and microcrystalline cellulose, and using rapeseed oil as a technological additive. It has been ascertained and concluded that all tested materials have demonstrated highest friction coefficient in the event of contact produced with dry ice being the maximum coefficient of friction equal to 0.61. The most unfavorable and dangerous hypothesis for exposure of pedestrians to the effect of on an ice- covered surface are the cases of contact with wet ice and melting ice. There is no correlation of the coefficient of friction for the different materials under conditions of dry ice, wet and melting ice. The composites with the highest coefficient of friction under circumstances of wet and melting ice have been used to produce prototypes of soles, having identical pattern, and experimental results were obtained for the coefficients of friction and the friction coefficient change /rise/ in the event of contact produced with regard to dry, wet and melting ice. By means of implementation of the 3D printing technology, patterns of footwear soles with identical dimensions were made of the same material but with different patterns and results were obtained for the impact of the pattern on the static and dynamic coefficient of friction produced in the course of a contact with an ice surface in its three relevant states - dry, wet and melting ice.
Authors and Affiliations
M. Kandeva, N. Dishovsky
Suitability of Recycled Polyethylene/Palm Kernel Shell-Iron Filings Composite for Automobile Application
A recycling aimed research was carried out to produce a new composite material and proffer suggestion for the possible use of the newly developed composite material. The empty water sachet (commonly called pure water nyl...
Tribological Behavior of Thermal Spray Coatings, Deposited by HVOF and APS Techniques, and Composite Electrodeposits Ni/SiC at Both Room Temperature and 300 °C
The Both the thermalspray and the electroplating coatings are widely used because of their high wear resistance combined with good corrosion resistance. In particular the addition of both micro particles or nano‐particle...
Evaluation of Hydraulic Resistance in Various Liquids and Temperature
This paper deals with a methodology for measuring and evaluating the static characteristics of control valves, with specifying a recommended measurement chain. This method enables measuring and evaluating the dependence...
Slew Bearings Damage Detection using Hilbert Huang Transformation and Acoustic Methods
Slow speed slew bearings are widely used in many applications such us radar, aviation and aerospace units, bogie bearings for vehicles, harbor and shipyard cranes. Slew bearings are design to carry out high axial and rad...
Softening Resistance, Dimensional Stability and Corrosion Behaviour of Alumina and Rice Husk Ash Reinforced Aluminium Matrix Composites Subjected to Thermal Cycling
The softening resistance, dimensional stability and corrosion behaviour of stir cast alumina and rice husk ash reinforced aluminium matrix composites subjected to thermal cycling has been investigated. Aluminium hybrid...