hermal behavior of ethylene/1-octene copolymer fractions at high temperatures: Effect of hexyl branch content
Journal Title: Polyolefins Journal - Year 2019, Vol 6, Issue 2
Abstract
In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fractionated to different fractions with homogenous hexyl branch (HB) content by preparative temperature rising elution fractionation (P-TREF) method. The P-TREF fractions were thermally analyzed via differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and evolved gas analysis (EGA). The P-TREF profile showed a short chain branch distribution (SCBD) of around 1.24. A linear relationship between P-TREF elution temperature (ET) and methylene sequence length (MSL) was presented. The DSC curves exhibited a monolithically increase in melting temperature (Tm) as well as crystallization temperature (Tc) by decreasing short chain branch (SCB) content. The calculated values of lamellae thickness suggested a linear function of SCB content and Tm. The TGA studies of P-TREF fractions depicted a two-stage thermal degradation behavior: pre-degradation and main degradation stages. Tmax for both pre-degradation and main degradation stages was increased for fractions with less hexyl branch content. As an interesting point the pre-degradation stage was found more intensified for more linear fractions. The concentration of main products was found to be affected by the content of hexyl branches using Py-GC-MS.
Authors and Affiliations
Abbas Kebritchi, Mehdi Nekoomanesh Haghighi, Fereidoun Mohammadi, Hossein-Ali Khonakdar, Udo Wagenknecht
Preparation and characterization of a bionanopolymer film for walnut packaging
To apply the nanomaterial as a component in the packaging material structure, in this research, the carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) film were prepared with three levels of nanoclay particles (0.5, 1...
A theoretical reasoning on why coordination catalysts supported on mesoporous supports can produce HDPE crystalline nanofibers but not iPP crystalline nanofibers
Since 1999, when Takuzo Aida proposed the preparation of high density polyethylene (HDPE) crystalline nanofibers through polymerization of ethylene by a Cp2TiCl2/MCM-41 catalyst, many researchers have published various p...
Preparation and characterization of polyethylene/ glass fiber composite membrane prepared via thermally induced phase separation method
Grinded glass fiber (GGF) embedded high density polyethylene (HDPE) membranes were prepared via thermally induced phase separation method. FESEM images showed that all the membranes had leafy structure, indicating a soli...
Effect of multi-walled carbon nanotube on mechanical and rheological properties of silane modified EPDM rubber
A novel mixing approach for achieving a good dispersion of multi-walled carbon nanotubes (MWCNTs) in ethylene- propylene diene monomer (EPDM) matrix has been investigated. In this approach EPDM was modified with vinyltri...
Thermal-insulation performance of low density polyethylene (LDPE) foams: Comparison between two radiation thermal conductivity models
The loss of energy, especially in industrial and residential buildings is one of the main reasons of increased energy consumption. Improving the thermal insulation properties of materials is a fundamental method for redu...