Implementasi Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Memprediksi Curah Hujan di Kota Semarang
Journal Title: Jurnal Statistika dan Komputasi - Year 2024, Vol 3, Issue 2
Abstract
Background: Rainfall is one of the important factors that has a significant impact on various aspects of life, especially in urban areas such as Semarang. Significant fluctuations in rainfall can cause flooding, which negatively impacts infrastructure, agriculture, health and well-being of the community. Therefore, accurate rainfall forecasting is essential to support informed decision-making. Objective: The purpose of this study is to identify and build an optimal SARIMA model for rainfall forecasting in Semarang City. Methods: This study used the Seasonal Autoregressive Integrated Moving Average (SARIMA) method to analyze the monthly rainfall data of Semarang City for the period 2017-2022, because it was able to handle seasonal patterns in the time series data. The best model is determined based on the Akaike Information Criterion (AIC) value, while the accuracy of the prediction is measured using the Mean Absolute Percentage Error (MAPE) value. Results: Based on the results of the analysis, the best SARIMA model was SARIMA (1,1,0) (0,1,0)12 because it produced the smallest AIC value (121.67) and MAPE of 41.59%. This model is used to predict rainfall from January 2023 to December 2025. Conclusion: The SARIMA (1,1,0) (0,1,0)12 model is the best model for rainfall forecasting in Semarang City. The results of this study support previous studies that state that the SARIMA method is effective for rainfall data that have high fluctuations and extreme values.
Authors and Affiliations
Asti Ermawati, Ahmad Amrullah, Khoirul Huda, M. Al Haris
Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA
Latar Belakang: Peramalan jumlah kedatangan penumpang kapal dalam negeri di pelabuhan dalam negeri sangat penting untuk antisipasi lonjakan penumpang. Tujuan: Tujuan dari penelitian ini adalah mendapatkan model terbai...
Penerapan Model Geographically Weighted Poisson Regression untuk Demam Berdarah Dengue Di Kabupaten Bojonegoro
Latar Belakang: Kasus Demam Berdarah Dengue (DBD) di Kabupaten Bojonegoro meningkat dari tahun 2017 sampai tahun 2019. Hal ini menjadi sulit karena wilayah geografis yang sangat luas di setiap Kecamatan. Untuk menga...
Implementasi Metode K-Modes Untuk Pengelompokkan Angkutan Sungai Dan Penyeberangan Di Kabupaten Bojonegoro
Latar Belakang: Kabupaten Bojonegoro merupakan salah satu kabupaten yang dilewati oleh sungai Bengawan Solo, serta menjadikan aliran sungai sebagai sarana transportasi warga. Transportasi ini lebih cepat daripada trans...
Optimalisasi Peramalan Total Aset PT. BPD Kaltim Kaltara dengan Double Exponential Smoothing Brown
Background: Total assets can provide a comprehensive picture of the wealth owned by a company or institution, with total assets also helping to assess the scale of operations, stability, and the company’s ability to meet...
Pemodelan Regresi Logistik Ordinal Pada Indeks Pembangunan Manusia (IPM) Di Jawa Timur Tahun 2020
Latar Belakang: Pemerintah terus menerus melakukan pembangunan di segala aspek yaitu aspek pendidikan, kesehatan, dan kehidupan yang layak. Untuk mengukur keberhasilan pembangunan, salah satunya digunakan indikator yaitu...