In-silico Evaluation of Rare Codons and their Positions in the Structure of ATP8b1 Gene

Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 1

Abstract

Background: Progressive familial intrahepatic cholestases (PFIC) are a spectrum of autosomal progressive liver diseases developing to end-stage liver disease. ATP8B1 deficiency caused by mutations in ATP8B1 gene encoding a P-type ATPase leads to PFIC1. The gene for PFIC1 has been mapped on a 19-cM region of 18q21- q22, and a gene defect in ATP8B1 can cause deregulations in bile salt transporters through decreased expression and/or activity of FXR. Point mutations are the most common, with the majority being missense or nonsense mutations. In addition, approximately 15% of disease-causing ATP8B1 mutations are annotated as splicing disrupting alteration given that they are located at exon-intron borders. Objective: Here, we describe the hidden layer of computational biology information of rare codons in ATP8B1, which can help us for drug design. Methods: Some rare codons in different locations of ATP8b1 gene were identified using several web servers and by in-silico modelling of ATP8b1 in Phyre2 and I-TASSER server, some rare codons were evaluated. Results: Some of these rare codons were located at special positions which seem to have a critical role in proper folding of ATP8b1 protein. Structural analysis showed that some of rare codons are related to mutations in ATP8B1 that are responsible for PFIC1 disease, which may have a critical role in ensuring the correct folding. Conclusion: Investigation of such hidden information can enhance our understanding of ATP8b1 folding. Moreover, studies of these rare codons help us to clarify their role in rational design of new and effective drugs.

Authors and Affiliations

M. Zarenezhad, S. M. Dehghani, F. Ejtehadi, S. M. B. Tabei

Keywords

Related Articles

Effects of Plantar Flexor Muscles Fatigue on Postural Control during Quiet Stance and External Perturbation in Healthy Subjects

Background: The maintenance of postural control is a key component in dynamic physical activity, especially during muscle fatigue and against external forces. Despite many studies in this field, there is no consensus reg...

Alzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation

In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievab...

A Monte Carlo Study on Dose Enhancement by Homogeneous and Inhomogeneous Distributions of Gold Nanoparticles in Radiotherapy with Low Energy X-rays

Background: To enhance the dose to tumor, the use of high atomic number elements has been proposed. Objective: The aim of this study is to investigate the effect of gold nanoparticle distribution on dose enhancement in t...

Gold-Curcumin Nanostructure in Photothermal Therapy on Breast Cancer Cell Line: 650 and 808 nm Diode Lasers as Light Sources

Background: Au nanoparticles (AuNPs) exhibit very unique physiochemical and optical properties, which now are extensively studied in a range of medical diagnostic and therapeutic applications. AuNPs can be used for cance...

Applications of Inertial Navigation Systems in Medical Engineering

Inertial navigation systems are of the most important and practical systems in determining the velocity, position and attitude of the vehicles and different equipment. In these systems, three accelerometers and three gyr...

Download PDF file
  • EP ID EP613380
  • DOI -
  • Views 124
  • Downloads 0

How To Cite

M. Zarenezhad, S. M. Dehghani, F. Ejtehadi, S. M. B. Tabei (2019). In-silico Evaluation of Rare Codons and their Positions in the Structure of ATP8b1 Gene. Journal of Biomedical Physics and Engineering, 9(1), 105-120. https://europub.co.uk/articles/-A-613380