Knowledge-Based System for Categorization and Selection of Creativity Support Techniques

Abstract

Objective: In order to maintain its market share in current competitive scenario, every design organization must enhance its creativity skills, the basis to innovate and develop adequate solutions to changing costumers’ needs. A great expertise is required to reach such creativity level, a skill currently dependent on human capability. As such knowledge is subjected to availability, the development of a computational system with the capacity of selecting appropriately creativity techniques becomes relevant, emulating decision-making ability. This work aims to elucidate implemented metrics on a knowledge-based system (KBS) for asserting creativity techniques, serving as a comparison filter between typical design team’s needs and the available techniques. Design/Methodology/Approach: Creativity tools are powerful allies in building alternative mind pathways, through which a team may develop better and more suitable ideas. Each tool has appropriate use situations, covering several aspects of the design process, organization and team profile. To assert appropriately creativity techniques, the KBS requires a logic connection between factors that lead to the choice and the actual tool selection, i.e. the system output results. Such chaining was structured in a double inference process using categorization, which describes the entry scenario in terms of five categories and matches the identified values of each category with available creativity techniques. Results: The developed prototype is able to select adequate creativity techniques in design. The five categories aid in filtering techniques according to the design situation, reducing the selection spectrum and supporting the appropriate choice of tools. In its current version, the prototype selects among 24 creativity support techniques in a combination of more than 500 design scenarios. The outputs include explanations on the used inference process, learnings on how to use each tool, overall information and examples.

Authors and Affiliations

Luiz Fernando de Carvalho Botega, Jonny Carlos da Silva

Keywords

Related Articles

Análise Bibliométrica e Principais Dimensões da Literatura sobre Open Innovation

Objetivo: O objetivo do artigo é fazer uma análise bibliométrica da produção científica da área da Open Innovation (OI) até 2014, e também apresentar uma contribuição teórica enfatizando as dimensões mais proeminentes ne...

Relato Técnico "La Gestion de Conocimiento en el Parque Científico de Innovación Social (PCIS) en Bogota/Colombia"

Objetivo: Desarrollar un marco de referencia para la gestión del conocimiento en el PCIS, a través plataforma tecnológica de gestión del conocimiento (PGC). Diseño/Metodología/Abordaje: El marco de referencia para...

Co-Creación e Innovación Social en Vivelab Bogotá, caso Comunidad Indígena Kichwa: aplicación móvil como herramienta para el fomento de la preservación y el uso de la lengua Runashimi

Objetivo: Runashimi, es el nombre de una aplicación creada para dispositivos móviles y PC, con el ánimo de fomentar la preservación y el uso de la lengua tradicional indígena de la comunidad Kichwa, originaria de los And...

UBUNTU: A escola necessária para o futuro

As perspectivas da educação no futuro têm sido intensamente debatidas. As questões sobre a educação e seus desafios são múltiplas e complexas, apontando a necessidade de busca por outros modelos educacionais. O desenvolv...

Descoberta baseada em literatura: estado da arte

A Mineração de Textos (MT) pode ser entendida como o estudo e a prática de extrair informação de textos usando os princípios da linguística computacional. Uma das subáreas da mineração de texto que tem recebido grande at...

Download PDF file
  • EP ID EP33711
  • DOI -
  • Views 313
  • Downloads 0

How To Cite

Luiz Fernando de Carvalho Botega, Jonny Carlos da Silva (2015). Knowledge-Based System for Categorization and Selection of Creativity Support Techniques. International Journal of Knowledge Engineering and Management (IJKEM), 4(10), -. https://europub.co.uk/articles/-A-33711