N-FRACTIONAL CALCULUS OPERATOR METHOD TO THE EULER EQUATION
Journal Title: Проблемы анализа-Issues of Analysis - Year 2018, Vol 7, Issue 2
Abstract
We can obtain the explicit solutions of the Euler equation by using the fractional calculus methods. So, we apply the N operator method in the fractional calculus to solve this equation in this paper. We take advantage of some results of previous studies related to the fractional calculus.
Authors and Affiliations
Resat Yilmazer, Okkes Ozturk
Multivariate Iyengar type inequalities for radial functions
Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in R^N, N>=2, and the related multivariate polar inte...
JACOBIAN CONJECTURE, TWO-DIMENSIONAL CASE
The Jacobian Conjecture was first formulated by O. Keller in 1939. In the modern form it supposes injectivity of the polynomial mapping f: R^n → R^n (C^n → C^n) provided that jacobian J_f ≡ const ≠ 0. In this note we con...
Sharp estimates of products of inner radii of non-overlapping domains in the complex plane
In the paper we study a generalization of the extremal problem of geometric theory of functions of a complex variable on non-overlapping domains with free poles: Fix any γ ∈ R + and find the maximum (and describe all ext...
СВОЙСТВО ВЫПУКЛОСТИ ВЗАИМНЫХ МУЛЬТИФРАКТАЛЬНЫХ РАЗМЕРНОСТЕЙ
В работе установлено свойство выпуклости взаимной муль- тифрактальной упаковочной размерности подмножества пере- сечения носителей вероятностых борелевских мер µ и ν. Также показано, что взаимная мультифрактальная хаусдо...
QUASI-ISOMETRIC MAPPINGS AND THE P-MODULI OF PATH FAMILIES
In this article, we study a connection between quasiisometric mappings of n-dimensional domains and the p-moduli of path families. In particular, we obtain explicit (and sharp) estimates for the distortion of the p-modul...