N-FRACTIONAL CALCULUS OPERATOR METHOD TO THE EULER EQUATION
Journal Title: Проблемы анализа-Issues of Analysis - Year 2018, Vol 7, Issue 2
Abstract
We can obtain the explicit solutions of the Euler equation by using the fractional calculus methods. So, we apply the N operator method in the fractional calculus to solve this equation in this paper. We take advantage of some results of previous studies related to the fractional calculus.
Authors and Affiliations
Resat Yilmazer, Okkes Ozturk
Solvability of the difference equations for the dynamics of cumulative sums
We consider the linear system of difference equations for the cumulative sum used in detecting network attacks. In the flow of events each can be dangerous with the known probability, in this case the cumulative sum is i...
EXTENSION OF THE REFINED GIBBS INEQUALITY
In this note, we give an extension of the refined Gibbs' inequality containing arithmetic and geometric means. As an application, we obtain converse and refinement of the arithmetic-geometric mean inequality.
ON DECRIPTIONS OF CLOSED IDEALS OF ANALYTIC AREA NEVANLINNA TYPE CLASSES IN A CIRCULAR RING ON A COMPLEX PLANE C
We define certain new large area Nevanlinna type spaces in circular ring K on a complex plane and provide complete decriptions of ideals of these new scales of spaces. Our results extend some previously known assertions.
The Tauberian theorems for the slowly variating with residual functions and their applications
В статье доказываются две тауберовых теоремы для преобразования Лапласа медленно меняющихся с остатком функций и рассматриваются их приложения к суммам значений неотрицательных мультипликативных функций, связанных с проб...
РАСПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ ОБОБЩЕННОЙ ФУНКЦИИ ДЕЛИТЕЛЕЙ В КЛАССАХ ВЫЧЕТОВ ПО РАСТУЩЕМУ МОДУЛЮ
В работе устанавливается асимптотическая формула с остаточным членом для распределения значений обобщенной функции делителей в классах вычетов по растущему модулю.