A non-linear procedure for the numerical analysis of crack development in beams failing in shear
Journal Title: Frattura ed Integrità Strutturale - Year 2016, Vol 10, Issue 35
Abstract
In this work, a consistent formulation for the representation of concrete behavior before and after cracking has been implemented into a non-linear model for the analysis of reinforced concrete structures, named 2D-PARC. Several researches have indeed pointed out that the adoption of an effective modeling for concrete, combined with an accurate failure criterion, is crucial for the correct prediction of the structural behavior, not only in terms of failure load, but also with reference to a realistic representation of crack initiation and development. This last aspect is particularly relevant at serviceability conditions in order to verify the fulfillment of structural requirements provided by Design Codes, which limit the maximum crack width due to appearance and durability issues. In more details, a constitutive model originally proposed by Ottosen and based on non-linear elasticity has been here incorporated into 2D-PARC in order to improve the numerical efficiency of the adopted algorithm, providing at the same time an accurate prediction of the structural response. The effectiveness of this procedure has been verified against significant experimental results available in the technical literature and relative to reinforced concrete beams without stirrups failing in shear, which represent a problem of great theoretical and practical importance in the field of structural engineering. Numerical results have been compared to experimental evidences not only in terms of global structural response (i.e. applied load vs. midspan deflection), but also in terms of crack pattern evolution and maximum crack widths.
Authors and Affiliations
P. Bernardi, R. Cerioni, E. Michelini, A. Sirico
Computed Tomography analysis of damage in composites subjected to impact loading
The composites, used in the transportation engineering, include different classes with a wide range of materials and properties within each type. The following different typologies of composites have been investigated:...
A research on detecting and recognizing bridge cracks in complex underwater conditions
The method aims to recognize and extract the characteristic parameters of bridge cracks based on images of the cracks obtained through the application of preprocessing technologies, such as graying, graphical enh...
Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation
Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE) seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for...
Comparison of two multiaxial fatigue models applied to dental implants
This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and...
Acoustic emission characteristics of instability process of a rock plate under concentrated loading
It can facilitate the understanding of the mechanical properties and failure laws of rocks to research on the rock failure mechanism and evolution characteristics of Acoustic Emission (AE). Under the concentrated...