Оптимизация состава интерметаллидного катализатора для окисления оксида углерода и углеводородов

Journal Title: Математичне моделювання - Year 2017, Vol 1, Issue 1

Abstract

THE OPTIMIZATION OF THE COMPOSITION INTERMETALLIC CATALYST FOR THE OXIDATION OF CARBON MONOXIDE AND HYDROCARBONS Sereda B.P.,Belokon K.V., Belokon Y.A. Abstract The paper presents the results of optimization composition intermetallic catalyst in the processes of neutralization carbon-containing components of gas emissions. The second-order orthogonal plan with the nucleus 23 was used to establish the regularities of the influence of the mixture composition on the catalytic properties and the derivation of the quadratic coefficients of the regression equation. Optimization parameters are: Y1 — specific surface area of the catalyst (Ssp), m2/g; Y2 — total porosity of the catalyst (P),%; Y3 — activity of the catalyst during oxidation of СО at 200оС ( ),%;Y4 — activity of the catalyst during oxidation of C3H8 at 200oC ( ),%. As independent variables were chosen: the content of the mixture of cobalt (Х1), the content of the mixture of manganese (Х2), the content of the mixture of copper (Х3). As the initial components were used pure powders of nickel, aluminum, cobalt, manganese oxide and copper. A number of the equations were obtained in the results of regression analysis, which show the dependence of the catalytic properties and porosity of the catalyst on the content of the alloying elements. As a result of mathematical planning, it was found that the optimal composition of the catalyst is, mass %: nickel — 30%, cobalt — 10%, manganese — 11%, copper — 2%, aluminum — the rest. For obtaining comparative data tests of the famous structure of the catalyst which have received in the conditions of burning were in parallel carried out. The catalytic activity and the specific surface of the received catalyst were estimated with the famous structure. The obtained catalysts were used in the processes of neutralization of carbon monoxide and hydrocarbons. As a result of the study it was found that using the obtained intermetallic catalyst, the conversion of CO is 100%, and the conversion of C3H8 is 95%. When using the known catalyst the conversion of CO is 85%, and the conversion of C3H8 is 75%. The specific surface area of the obtained catalyst was 110 m2/g, and for the known composition it was 65 m2/g. References [1] Sereda B.P., Kozhemyakin G.B., Ryzhkov V.G., Savela K.V., Belokon Y.A. Vliyanie sostava nikel'-alyuminievogo splava s dobavkami Co, Mn i Cu na strukturu i udel'nuyu aktivnost' katalizatora na ikh osnove [The effect of the composition of a nickel-aluminum alloy with Co, Mn and Cu additives on the structure and specific activity of a catalyst based on them]. Stroitel'stvo, materialovedenie, mashinostroenie: sb. nauch. trudov, 2009, no. 48, pp. 101–104 (in Russian). [2] Grigoryan E.A., Merzhanov A.G. Katalizatory ХХI veka [Catalysts of the XXI century]. Nauka proizvodstvu, 1998, no. 3 (5), pp. 30–41 (in Russian). [3] Sereda B.P., Kozhemyakin G.B., Savela K.V., Belokon Y.A., Ryzhkov V.G. Issledovanie vliyaniya fazovogo sostava Ni-Al splavov na fizikohimicheskie svoystva skeletnyih nikelevyih katalizatorovda [Investigation of the influence of the phase composition of Ni-Al alloys on the physicochemical properties of skeleton nickel catalysts], Metallurgiya, 2009, no. 20, pp. 112–117 (in Russian). [4] Sereda B., Belokon’ Y., Zherebtsov A. and Sereda D. “The researching and modeling of physical-chemical properties of Ni-base alloys in SHS conditions”, Materials Science and Technology, vol. 1, pp. 494–498, October 2012. (references) [5] Sereda B., Belokon Y., Belokon K., Sereda D. Issledovanie fiziko-mehanicheskih svoystv intermetallidnyih katalizatorov, poluchennyih v usloviyah SVS [Investigation of the physico-mechanical properties of intermetallic catalysts obtained under SHS conditions]. Metaloznavstvo ta termichna obrobka metaliv, 2015, no. 2 (69), pp. 19–23 (in Russian). [6] Novik F.S., Arsov Ya.B. Optimizatsiya protsessov tehnologii metallov metodami planirovaniya eksperimentov [Optimization of metal technology processes by experiment planning methods], Moscow: Mashinostroenie, 1980, 304 p (in Russian). [7] Adler Y.P., Markova E.V., Granovskiy Y.V. Planirovanie eksperimenta pri poiske optimalnyih usloviy [Planning an experiment when searching for optimal conditions], Moscow: Nauka, 1976, 320 p. [8] Sereda B., Sheyko S., Kruglyak I. and Belokon’ Y. “Application of activation of substrate by aluminium and copper for increase of adhesive durability of sheetings received in self-propagating high-temperature synthesis conditions”, 10th International Conference on the Science and Technology of Adhesion and Adhesives, Oxford, UK, pp. 437–439, 2008. [9] Belokon K., Belokon Y., Kozhemyakin G. and Matukhno E. “Environmental assessment of the intermetallic catalysts utilization efficiency for deactivation of the pollutants emitted by electrode production enterprises”, Scientific bulletin of National Mining University, № 3 (153), pp. 87–94, 2016. [10] Rumiantsev V., Yakubin N., Bielokon K., Matukhno E. and Leventsova C. “Ecological aspects of the neutralization of gas emissions leaving from the resin storehouse of joint – stock company «Zaporozhkoks»”, Metallurgical and Mining Industry, №.4, pp. 105–109, 2015.

Authors and Affiliations

Б. П. Середа, К. В. Белоконь, Ю. А. Белоконь

Keywords

Related Articles

Физико-химическое моделирование получения в условиях самораспространяющегося высокотемпературного синтеза износостойких покрытий

PHYSICO-CHEMICAL MODELING OF PRODUCTION UNDER CONDITIONS SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS WEAR-RESISTANT COATINGS Beigyl O.A., Sereda D.B. Abstract There are many methods for hardening the surface of steels,...

Про оптимізацію параметрів системи автоматизованого обліку навчальної діяльності студента

ABOUT OPTIMISATION OF AUTOMATIC COUNTING’S PARAMETERS OF STUDENT STUDYING PROCESS Olyinik L.O., Kravets M.Yu. Abstract In the whole work authors focus on the problem of studying process automation. It is one of the most...

МОДЕЛЬ МЕХАНІЗМУ КАТАЛІТИЧНИХ РЕАКЦИЙ ГЛИБОКОГО ОКИСЛЕННЯ ОКСИДУ ВУГЛЕЦЮ

MODEL OF THE MECHANISM CATALYTIC REACTIONS OF DEEP OXIDATION OF CARBON OXIDE Sereda B.P., Belokon K.V., Belokon Yu.A., Kruglyak I.V. Abstract Heterogeneous catalytic reactions are among the complex multistage processes....

Математическая модель плавления утяжеленного комбинированного алюмосодержащего раскислителя цилиндрической формы в защитной оболочке

This article presents the one- and two-dimensional mathematical model of melting aluminum-weighted combined deoxidizer cylindrical shape in the containment in the melt and asymmetric boundary conditions at the interface...

Математична модель динаміки дроту в ковші, що враховує напруження згинання і кручення

The article is devoted to the development of mathematical model of the dynamics of cored wire in steel ladle dur-ing secondary treatment of the metal. Unlike previous models in addition to bending stress the wire`s torsi...

Download PDF file
  • EP ID EP277104
  • DOI -
  • Views 49
  • Downloads 0

How To Cite

Б. П. Середа, К. В. Белоконь, Ю. А. Белоконь (2017). Оптимизация состава интерметаллидного катализатора для окисления оксида углерода и углеводородов. Математичне моделювання, 1(1), 55-58. https://europub.co.uk/articles/-A-277104