Oxygen uptake kinetics during uphill and flat cycling in laboratory and field conditions
Journal Title: Journal of Science and Cycling - Year 2014, Vol 3, Issue 2
Abstract
Background: Previous studies have shown ~5% higher power outputs during a 20-min uphill time-trial¬ compared to a flat time-trial (Nimmerichter et al., 2012: European Journal of Applied Physiology, 112(1), 69-78) and a more even distribution of torque during the pedal revolution during uphill cycling on a treadmill (Arkesteijn et al., 2013: Medicine and Science in Sports and Exercise, 45(5), 920-926). Purpose: To analyse the effect of gradient, cadence and intensity on the primary response of oxygen uptake in laboratory and field conditions.Methods: Thirteen trained cyclists (mean ± s: age 23 ± 5 years; stature 178.5 ± 5.2 cm; body mass 68.7 ± 7.8 kg) performed an incremental ergometer test to determine Pmax (403 ± 43 Watt), V ̇O2max (68.2 ± 4.7 mL∙min-1∙kg-1), the first ventilatory threshold (VT) and the intensity corresponding to 70% (Δ70%) between VT and Pmax. On two separate days the participants performed four trials of 6-min in a seated position on level ground (1.5%) and uphill cycling (5%) at 60 and 90 rev.min-1 at two exercise intensities at 90%VT (159 ± 20 W) and Δ70% (336 ± 35 W) in laboratory and field conditions. Power output was measured with a SRM professional power crank (Schoberer Rad-Messtechnik, Jülich, Germany), which was mounted on a 26-inch mountain bike. To simulate the gradient in laboratory conditions, the bicycle was mounted on an indoor trainer (TACX Elite, Netherlands) and was fixed on a treadmill. Oxygen uptake was measured breath-by-breath with a portable gas analyser (MetaMax3B, CORTEX, Germany). The V ̇O2 breath-by-breath data were interpolated at 1-second intervals and the time constant and the amplitude of the exponential primary phase were resolved by least square regression (GraphPad Prism 6.0, GraphPad Software, USA). A factorial ANOVA with gradient, cadence, intensity and condition as model factors was used for statistical analyses. The level of significance was accepted at P < 0.05. Results: The time constant was significantly affected by the gradient (F1,12 = 10.3, P = 0.008; uphill: 17.9 ± 2.6 sec, flat: 20.9 ± 2.1 sec), the cadence (F1,12 = 5.0, P = 0.045; 60 rev.min-1: 20.3 ± 2.5 sec, 90 rev.min-1: 18.5 ± 1.8 sec) and the intensity (F1,12 = 15.8, P = 0.002; 90%VT: 17.2 ± 2.5 sec, Δ70%: 21.6 ± 2.7 sec). No significant difference was observed between laboratory (19.2 ± 2.1 sec) and field conditions (19.6 ± 2.2 sec) (F1,12 = 0.3, P = 0.613). The amplitude was significantly affected by the cadence (F1,12 = 97.7, P < 0.001; 60 rev.min-1: 1818 ± 95 mL, 90 rev.min-1: 2083 ± 249 mL), the intensity (F1,12 = 425.2, P < 0.001; 90%VT: 1292 ± 234 mL, Δ70%: 2608 ± 260 mL) and the condition (F1,12 = 6.8, P = 0.023; field: 2040 ± 281 mL, laboratory: 1861 ± 216 mL). No significant difference was observed between uphill (1969 ± 213 mL) and flat cycling (1932 ± 234 mL) (F1,12 = 1.5, P = 0.244).Discussion: The faster oxidative response observed during uphill compared to flat cycling reduce the oxygen deficit, can improve exercise tolerance and therefore can possibly increase performance. Although the amplitude was significantly higher at the higher-cadence, the V ̇O2 on-kinetics were significantly faster. Thus, a high-cadence starting strategy at the onset of exercise might be beneficial. The higher amplitude during field compared to laboratory conditions indicate an increased energy demand during outdoor cycling.
Authors and Affiliations
A Nimmerichter| Department of Sport and Exercise Sciences, University of Applied Sciences Wiener Neustadt, Austria, K Haselsberger| Department of Sport and Exercise Sciences, University of Applied Sciences Wiener Neustadt, Austria, B Prinz| Department of Sport and Exercise Sciences, University of Applied Sciences Wiener Neustadt, Austria
Physiological and performance characteristics of road, mountain bike and BMX cyclists
The purpose of this research was to quantify several physiological and power output characteristics of high-performance road, cross-country mountain bike (XCMB), downhill mountain bike (DHMB) and bicycle motocross (BMX)...
The effect of wheel diameter on vertical and horizontal mountain bike position
Background: Mountain bike wheel dimensions have evolved to larger diameters in recent years. While numerous claims can be found for performance advantages of larger diameter wheels, systematic comparisons of mechanical c...
The effect of aerodynamic characteristics on the drafting effect in track cycling
Since the aim of the men’s team pursuit is to accomplish a distance of 4000m as fast as possible, reducing aerodynamic drag by means of drafting can attribute in achieving this goal. Broker et al.1 quantified the average...
The reliability and validity of the 3-minute critical power test in linear and isokinetic mode
Background: Exercise testing for cyclists provides key information when setting training and race strategies. Shorter testing protocols are favored by coaches and recently it has been suggested that critical power (CP) a...
Low back pain in cycling: does it matter how you sit?
Low Back Pain (LBP) is a common problem among cyclists, although studies investigating LBP during cycling are scarce. Most studies have focused on LBP and geometric bike-related variables. Until now no cycling field stu...