Parabolic by Shilov systems with variable coefficients
Journal Title: Карпатські математичні публікації - Year 2017, Vol 9, Issue 2
Abstract
Because of the parabolic instability of the Shilov systems to change their coefficients, the definition parabolicity of Shilov for systems with time-dependent $t$ coefficients, unlike the definition parabolicity of Petrovsky, is formulated by imposing conditions on the matricant of corresponding dual by Fourier system. For parabolic systems by Petrovsky with time-dependent coefficients, these conditions are the property of a matricant, which follows directly from the definition of parabolicity. In connection with this, the question of the wealth of the class Shilov systems with time-dependent coefficients is important. A new class of linear parabolic systems with partial derivatives to the first order by the time $t$ with time-dependent coefficients is considered in this work. It covers the class by Petrovsky systems with time-dependent younger coefficients. A main part of differential expression of each such system is parabolic (by Shilov) expression with constant coefficients. The fundamental solution of the Cauchy problem for systems of this class is constructed by the Fourier transform method. Also proved their parabolicity by Shilov. Only the structure of the system and the conditions on the eigenvalues of the matrix symbol were used. First of all, this class characterizes the wealth by Shilov class of systems with time-dependents coefficients. Also it is given a general method for investigating a fundamental solution of the Cauchy problem for Shilov parabolic systems with positive genus, which is the development of the well-known method of Y.I. Zhitomirskii.
Authors and Affiliations
V. Litovchenko
On the structure of least common multiple matrices from some class of matrices
For non-singular matrices with some restrictions, we establish the relationships between Smith normal forms and transforming matrices (a invertible matrices that transform the matrix to its Smith normal form) of two matr...
On generalized complex space forms satisfying certain curvature conditions
We study Ricci soliton $(g,V,\lambda)$ of generalized complex space forms when the Riemannian, Bochner and $W_2$ curvature tensors satisfy certain curvature conditions like semi-symmetric, Einstein semi-symmetric, Ricci...
Optimal control problem for systems governed by nonlinear parabolic equations without initial conditions
An optimal control problem for systems described by Fourier problem for nonlinear parabolic equations is studied. Control functions occur in the coefficients of the state equations. The existence of the optimal control i...
Boundary problem for the singular heat equation
The scheme for solving of a mixed problem with general boundary conditions is proposed for a heat equation $$ a(x)\frac{\partial T}{\partial \tau}= \frac{\partial}{\partial x} \left(\lambda(x)\frac{\partial T}{\partial x...
The nonlocal problem for the 2n differential equations with unbounded operator coefficients and the involution
We study a problem with periodic boundary conditions for a 2n-order differential equation whose coefficients are non-self-adjoint operators. It is established that the operator of the problem has two invariant subspaces...