Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2017, Vol 71, Issue 2
Abstract
In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W1LΦ([0,T]). We employ the direct method of calculus of variations and we consider a potential function F satisfying the inequality |∇F(t,x)|≤b1(t)Φ′0(|x|)+b2(t), with b1,b2∈L1 and certain N-functions Φ0.
Authors and Affiliations
Sonia Acinas, Fernando Mazzone
Some properties for α-starlike functions with respect to k-symmetric points of complex order
In the present work, we introduce the subclass Tkγ,α(φ), of starlike functions with respect to k-symmetric points of complex order γ (γ≠0) in the open unit disc △. Some interesting subordination criteria, inclusion relat...
An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
The main result establishes that a weak solution of degenerate nonlinear elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.
A survey of a selection of methods for determination of Koebe sets
In this article we take over methods for determination of Koebe set based on extremal sets for a given class of functions.
The generalized Day norm. Part II. Applications
In this paper we prove that for each 1<p,p~<∞, the Banach space (lp~,∥⋅∥p~) can be equivalently renormed in such a way that the Banach space (lp~,∥⋅∥L,α,β,p,p~) is LUR and has a diametrically complete set with empty int...
Some new inequalities of Hermite–Hadamard type for GA-convex functions
Some new inequalities of Hermite–Hadamard type for GA-convex functions defined on positive intervals are given. Refinements and weighted version of known inequalities are provided. Some applications for special means are...