Eccentric distance sum index for some classes of connected graphs
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2017, Vol 71, Issue 2
Abstract
In this paper we show some properties of the eccentric distance sum index which is defined as follows ξd(G)=∑v∈V(G)D(v)ε(v). This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.
Authors and Affiliations
Halina Bielak, Katarzyna Broniszewska
On generalized Mersenne numbers, their interpretations and matrix generators
In this paper we introduce generalized Mersenne numbers. We shall present some of their interpretations and matrix generators which are very useful for determining identities.
Oscillation of third-order delay difference equations with negative damping term
The aim of this paper is to investigate the oscillatory and asymptotic behavior of solutions of a third-order delay difference equation. By using comparison theorems, we deduce oscillation of the difference equation from...
On a two-parameter generalization of Jacobsthal numbers and its graph interpretation
In this paper we introduce a two-parameter generalization of the classical Jacobsthal numbers ((s, p)-Jacobsthal numbers). We present some properties of the presented sequence, among others Binet’s formula, Cassini’s ide...
Some properties for α-starlike functions with respect to k-symmetric points of complex order
In the present work, we introduce the subclass Tkγ,α(φ), of starlike functions with respect to k-symmetric points of complex order γ (γ≠0) in the open unit disc △. Some interesting subordination criteria, inclusion relat...
On almost complex structures from classical linear connections
Let Mfm be the category of m-dimensional manifolds and local diffeomorphisms and let T be the tangent functor on Mfm. Let V be the category of real vector spaces and linear maps and let Vm be the category of m-dimension...