Порівняння методів прогнозування часових рядів
Journal Title: Бионика интеллекта - Year 2018, Vol 2, Issue 91
Abstract
Стаття присвячена опису і порівнянню моделей прогнозування часових рядів і виявленню можливостей застосування різних моделей для вирішення задач прогнозування з різними вихідними даними: часові інтервали, наявність сезонності та/або трендів. Крім цього, серед двох популярних методів прогнозування ARIMA і ANN проведені більш детальний огляд і практичне порівняння на прикладі реальних часових рядів вартості житнього хліба в Україні, визначені похибки прогнозування на короткостроковий і довгостроковий періоди. Оцінка похибки проводилася з використанням програмної системи, представленої в даній статті, шляхом порівняння відхилення результатів прогнозування від реальних даних за останній період, що становить 1/4 вихідних даних. Згідно з отриманими результатами зроблено висновки щодо ефективності обох методів і потенційних можливостей їх майбутнього використання. Також пропонується використовувати представлену програмну систему для екстраполяції рядів в різних областях, таких як економіка, технічні системи, освіту, природні та соціальні системи. The article is devoted to the description and comparison of time series forecasting models and identifying the possibilities of using various models for solving forecasting problems with different initial data: time intervals, presence of seasonality and / or trends. In addition, among the two popular ARIMA and ANN forecasting methods, a more detailed review and practical comparison was made using the example of real time series of the cost of rye bread in Ukraine, forecast errors for the short and long term were identified. The estimation of the error was carried out using the software system presented in this article by comparing the deviation of the prediction results from the real data for the last period, which is 1/4 of the original data. According to the results obtained, conclusions were drawn regarding the effectiveness of both methods and the potential possibilities of their future use. It is also proposed to use the presented software system for extrapolating series in various fields, such as economics, technical systems, education, natural and social systems.
Authors and Affiliations
М. С. Широкопетлєва, О. А. Пономаренко, З. В. Дудар
Моделювання та автоматизація процесу електрокоагуляційного очищення стічних вод
Побудовано математичну модель процесу електрокоагуляційного очищення стічних вод, що враховує геометричні розміри реактора, об’ємну витрату рідини та прикладену силу струму. Розроблено імітаційну модель, яка описує проце...
Detection of Blood Cells
The structure of the medical image analysis system is considered. The algorithm of the blood cell recognition system is given. Formulated the main tasks to be solved during the morphological analysis of blood. The requir...
Прогнозирование предпочтений пользователей на основе анализа их действий
Предложен подход к определению предпочтений пользователей, который базируется на синтезированной модели выбора. Решена задача структурной и параметрической идентификации этой модели на основе идей теории компараторной ид...
Распознавание изменения размера и цвета изображения на основе сверточной нейронной сети
В статье рассмотрено применение сверточной нейронной сети Mask R-CNN для распознавания изменения размера и цвета изображения. Применение данной сети оправдано тем, что в отличие от других типов сверточных нейронных сетей...
Метод порівняння текстово-графічних фрагментів в електронних документах за гібридним критерієм
Розглянуто метод порівняння текстово-графічних фрагментів в електронних документах за гібридним критерієм. Цей метод дозволяє визначати інтегроване значення подібності між запитом, пов’язаним з зображенням в запиті, та т...