Modeling the user’s choice in the constraints of the cold start of the recommender system
Journal Title: Бионика интеллекта - Year 2019, Vol 1, Issue 92
Abstract
The problem of supporting user choice in recommender systems is considered, taking into account the limitations that arise when solving a cold start problem. Structuring of this problem was carried out and such aspects of a cold start were highlighted as the emergence of a new user, the emergence of a new consumer interest object, a change in the user selection context, a change in consumer interests over time. A system-oriented model of object selection in the normal operation mode of the recommender system was proposed, as well as a model-oriented model of object selection under cold start conditions. Restrictions in the proposed models are presented in the form of predicates on variables that characterize the properties of consumers and objects of their interest, as well as the context of consumer choice. The advantage of the proposed models is the ability to limit the input data, so that they correspond to the most significant laws of consumer choice in this context at a given time interval, which allows us to simplify the construction of recommendations for new consumers and new objects. An approach to building recommendations in the context of cold start restrictions is proposed. The approach assumes the formation of constraints based on the intellectual analysis of the input data of the recommender system, as well as the further use of these constraints in constructing recommendations in cold start conditions
Authors and Affiliations
Володимир Лещинський, Ірина Лещинська
Detection of Blood Cells
The structure of the medical image analysis system is considered. The algorithm of the blood cell recognition system is given. Formulated the main tasks to be solved during the morphological analysis of blood. The requir...
Эволюционирующая радиально-базисная нейронная сеть и экстремальное обучение ее параметров
Предложен подход к формированию архитектуры и обучению эволюционирующей радиально-базисной нейронной сети (RBFN), которая обрабатывает данные, поступающие в режиме online. Он состоит из двух этапов. Первый из них базируе...
Modeling the user’s choice in the constraints of the cold start of the recommender system
The problem of supporting user choice in recommender systems is considered, taking into account the limitations that arise when solving a cold start problem. Structuring of this problem was carried out and such aspects o...
Порівняння методів прогнозування часових рядів
Стаття присвячена опису і порівнянню моделей прогнозування часових рядів і виявленню можливостей застосування різних моделей для вирішення задач прогнозування з різними вихідними даними: часові інтервали, наявність сезон...
Моделирование колориметрических параметров микрокосмов для улучшения режимов эксплуатации тестовых микроэкосистем
Данная статья посвящена определению системных колориметрических параметров микрокосмов, обеспечивающих повышение колориметрической однородности поверхности, в составе тестовых микроэкосистем. С использованием дискретных...