Some noncommutative rings constructed on the base of polynomials x² + tx + 1 and their zero divisors
Journal Title: Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations - Year 2017, Vol 0, Issue 1
Abstract
For any Galois field F = GF(pn) we construct some ring extension R(F) of order p4n. Such construction may be applied also for any infinite field F with char F 6= 0. Then, for any element of R(F) we give necessary and sufficient condition to be a zero divisor. With additional assumptions, we make some variations on this condition. In special cases we are able to calculate easily the number of all zero divisors and of idempotents and nilpotents of degrre 2. The method used to construct R(F) is the following. First we find t 2 F, such that the polynomial x2 + tx + 1 does not have roots in F (such t-s exist!). Then we take the 4-dimensional F-vector space with basic elements 1, i, j, k, where i, j, k not belonging to F are roots of x2 +tx+1 in the ring extension, and ji = k t. Thus multiplication of i, j, k (and hence in all ring) is some generalization of multiplication in the real Hamilton quaternions. In consequence, we have got wide class of noncommutative rings. It is known very much on noncommutative rings of smaller order, e.g. in 1994 J. B. Derr, G. F. Orr, and P. S. Peck classified all noncommutative rings of order p4, using radical as a helpful tool. Thus, in the particular case n = 1, each of the rings constructed here must be of one kind given by Derr and the others. Our consideration is more general. It turns out that selected properties of R(F) depend on char F and on t2 22 is a square in F or not. To get these and other results, we use some properties of multiplicative subgroup of nonzero squares in GF(pn) and of the polynomial x2+tx+1. All contents is provided with examples illustrating general situation or special cases.
Authors and Affiliations
Jan Jakóbowski
Estimates for approx-imations by Fourier sums, best approximations and best orthogonal trigonometric approximations of the classes of ψ, β ) differentiable functions / Oszacowania dla aproksymacji sumami Fouriera, najlepszych aproksymacji i najlepszych ortogonalnych trygonometrycznych aproksymacji klas funkcji różniczkowalnych
We obtain the exact-order estimates for approximations by Fourier sums, best ap- proximations and best orthogonal trigonometric approximations in metrics of spaces Ls, 1 ≤s < 1, of classes of 2 π -p eriodic functions, wh...
Invariants under conformal rescaling of the space-time - A study including consequences for the metric
The conformal transformations play crucial role in the analysis of global structure of the physical space-time. This paper shows some geometrical and physical objects which describe the space-time. There are also given t...
Separating transformation and extremal decomposition of the complex plane / Przekształcenie oddzielające i eksperymentalny rozkład płaszczyzny zespolonej
The paper is devoted to extremal problems of the geometric function theory of complex variable associated with estimates of functionals defined on systems of non-overlapping do- mains. In particular, focus of investigati...
Numerical and analytical determination of compact thermal modal parameters / Numeryczne i analityczne wyznaczanie parametrów kompaktowych modeli termicznych
-
Effective Lojasiewicz gradient inequality for generic Nash functions with isolated singularity / Efektywna nierówność Łojasiewicza z gradientem dla generycznej funkcji Nasha z izolowana osobliwością
-