STABILITY AND ACCURACY OF THE ROBUST SYSTEM FOR STABILIZING THE ROTOR FLUX-LINKAGE OF AN ASYNCHRONOUS ELECTRIC DRIVE AT RANDOM VARIATIONS OF THE UNCERTAIN PARAMETERS WITHIN THE SPECIFIED BOUNDARIES
Journal Title: Електротехніка і Електромеханіка - Year 2018, Vol 0, Issue 4
Abstract
Purpose. The aim is to investigate the stability and the accuracy of a robust system for stabilizing the rotor flux-linkage of an asynchronous electric drive at random variations of the uncertain parameters of the object and the regulator within the specified boundaries. Methodology. To make the research, the mathematical model of the rotor flux-linkage channel of the vector control system of an asynchronous electric drive with parametric uncertainty was applied. The transfer function of the Н∞-suboptimal regulator was calculated using the mixed sensitivity method. This transfer function was used to construct the regulator structural scheme in the form of a connection of proportional and integrating links and several adders. Analytical dependences of the coefficients of the regulator's transfer function on the parameters of links of such a connection are determined. These dependences served to researching the influence of uncertain parameters of the regulator links and the object on the stability of the robust system and the accuracy of flux-linkage stabilization. Results. Investigations of the robust system stability and the accuracy of flux-linkage stabilization in the Robust Control Toolbox are done. The curves of the flux-linkage transient processes and the Bode diagram for the open system at random variations of the indeterminate parameters of the object and the regulator links within the specified boundaries are constructed. A choice of variable parameters was carried out by the Monte Carlo method. By the scatter of the obtained curves of the transient processes, the accuracy of flux-linkage stabilization was determined, and according to the Bode diagram, stability reserves in the amplitude and the phase of the robust system were determined. A high accuracy of flux-linkage stabilization (deviation less than 1 %) in fairly wide ranges of changing the uncertain parameters of the object and the regulator, while maintaining the stability of the system with permissible reserves in amplitude and phase, is established. Originality. For the first time, analytical dependences of the coefficients of the transfer function of the Н∞-suboptimal regulator on the parameters of its structural scheme, which represented in the form of a connection of proportional and integrating links, are obtained. The method for calculating the stability of a robust flux-linkage control system and the accuracy of its stabilization at random variations of the uncertain parameters of the object and the regulator links within the specified boundaries is developed. Practical value. The use of the proposed method allows, during the design of the regulator, to ensure the selection of its elements from standard series.
Authors and Affiliations
I. N. Khlopenko, S. A. Rozhkov, N. J. Khlopenko
RESEARCH ON ELECTRIC POTENTIALS ALIGNMENT ON THE GROUND SURFACE WITHIN THE GROUNDING CONDUCTOR TERRITORY
Results of research on distribution of electric potentials on the earth surface in the territory with a grounding conductor are analyzed. It is shown that potential over the center of a square grounding conductor can be...
STATISTICAL OPTIMIZATION OF FREQUENCY REGULATED INDUCTION ELECTRIC DRIVES WITH SCALAR CONTROL
Purpose. Working out of technique of synthesizing statistically optimal controllers of induction electric drives with frequency scalar control operating under stochastic loads. Methodology. It is shown, that one of the w...
CHARACTERISTICS OF A 4-PHASE VALVE RELUCTANCE MOTOR WHEN POWERED BY UNCAPACITOR SWITCHBOARD
Purpose. Nowadays more and more in a variety of machines and mechanisms applied switched reluctance motor. When designing these engines solve the problem selection switch. While the switch scheme comprises symmetrical br...
SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP
The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in l...
ELECTRIC GENERATOR IN THE RECUPERATION SYSTEM OF THE ENERGY FROM MECHANICAL OSCILLATIONS IN VEHICLES
The paper deals with the system of mechanical energy recuperation of vehicles in the useful electric energy accumulated in the rechargeable battery. This system creates an additional power supply on board of the vehicle...