The influence of mineralization conditions on the effectiveness of enzymatic mineralization of hydrogels

Journal Title: Engineering of Biomaterials / Inżynieria Biomateriałów - Year 2015, Vol 18, Issue 131

Abstract

Polysaccharide hydrogels are widely used in food industry and medicine. Gellan gum (GG) recently gained a lot of attention as a promising material for tissue regeneration proposes due to its excellent biocompatibility and similarity to natural extracellular matrix. However, in unmineralized form it is not suitable for bone tissue engineering because of weak mechanical properties. Enzymatic mineralization (e.g. using alkaline phosphatase – ALP) is one of the methods of calcifying of hydrogels and it resembles natural processes occurring during bone healing. The aim of this research was to investigate mineralization of hydrogels and to improve properties of gellan gum scaffolds by adjusting processing conditions. Since ALP does not form with GG covalent bonds, during incubation in mineralization medium (solution of calcium glycerophosphate - CaGP) it is diffusing from the samples. Therefore, mineralization effectiveness depends on the interplay between incoming CaGP and outgoing ALP molecules. We hypothesize that better CaGP availability, especially in the first hours of incubation, can result in more effective and homogenous precipitation of calcium phosphates (CaP) in GG samples. To this end, samples with different GG and ALP concentration were subjected to two different mineralization regimes (more and less frequent CaGP exchanges). We proved that better CaGP availability (more frequent CaGP exchange) resulted in better mechanical properties (Young’s modulus) and more effective mineral formation (higher dry mass percentage) of the samples compared to the same samples mineralized with lower accessibility of CaGP. This may be related to the fact, that in presence of fresh organic substrates, more CaP are formed in the outer parts of the samples at the beginning of the process, that limit ALP diffusion and allow more uniform mineralization.

Authors and Affiliations

K. Pietryga, E. Pamuła

Keywords

Related Articles

3D printed poly L-lactic acid (PLLA) scaffolds for nasal cartilage engineering

In this study the scaffolds for nasal cartilages replacement were designed using a software called Rhino 3D v5.0. The software parameters considered for the design of scaffolds were chosen and the scaffolds were fabricat...

A tubular polycaprolactone/hyaluronic acid scaffolds for nasal cartilage tissue engineering

In this preliminary study, 3D nanofibrous porous scaffolds in the form of spiral tubes for future application as nasal cartilages implants were fabricated by combining polycaprolactone electrospun fibers with drug modifi...

Badania in vitro aktywności przeciwbakteryjnej bioszkieł zawierających Mg, Sr i Au wytworzonych metodą zol-żel

Celem prowadzonych badań było określenie aktywności przeciwbakteryjnej in vitro bioaktywnych szkieł dotowanych Mg, Sr i Au. Przedstawiono badania zmodyfikowanych bioszkieł zawierających wybrane pierwiastki wprowadzone dl...

Influence of the multiple sterilization process on the biomaterial properties

Due to their favorable properties, numerous metallic materials, including titanium alloys are chosen for biomedical applications. A final preparation step before the implantation of a metallic biomaterial is sterilizatio...

Charakterystyka mechaniczna wielofunkcyjnej resorbowalnej płytki kompozytowej do zespoleń kostnych

W artykule przedstawiono badania mechaniczne prototypowego wszczepu do zespoleń kostnych w postaci resorbowalnej wielofunkcyjnej czterootworowej płytki w kształcie litery I. Testy dotyczyły gotowych implantów w symulowan...

Download PDF file
  • EP ID EP538718
  • DOI -
  • Views 41
  • Downloads 0

How To Cite

K. Pietryga, E. Pamuła (2015). The influence of mineralization conditions on the effectiveness of enzymatic mineralization of hydrogels. Engineering of Biomaterials / Inżynieria Biomateriałów, 18(131), 2-7. https://europub.co.uk/articles/-A-538718