The influence of mineralization conditions on the effectiveness of enzymatic mineralization of hydrogels

Journal Title: Engineering of Biomaterials / Inżynieria Biomateriałów - Year 2015, Vol 18, Issue 131

Abstract

Polysaccharide hydrogels are widely used in food industry and medicine. Gellan gum (GG) recently gained a lot of attention as a promising material for tissue regeneration proposes due to its excellent biocompatibility and similarity to natural extracellular matrix. However, in unmineralized form it is not suitable for bone tissue engineering because of weak mechanical properties. Enzymatic mineralization (e.g. using alkaline phosphatase – ALP) is one of the methods of calcifying of hydrogels and it resembles natural processes occurring during bone healing. The aim of this research was to investigate mineralization of hydrogels and to improve properties of gellan gum scaffolds by adjusting processing conditions. Since ALP does not form with GG covalent bonds, during incubation in mineralization medium (solution of calcium glycerophosphate - CaGP) it is diffusing from the samples. Therefore, mineralization effectiveness depends on the interplay between incoming CaGP and outgoing ALP molecules. We hypothesize that better CaGP availability, especially in the first hours of incubation, can result in more effective and homogenous precipitation of calcium phosphates (CaP) in GG samples. To this end, samples with different GG and ALP concentration were subjected to two different mineralization regimes (more and less frequent CaGP exchanges). We proved that better CaGP availability (more frequent CaGP exchange) resulted in better mechanical properties (Young’s modulus) and more effective mineral formation (higher dry mass percentage) of the samples compared to the same samples mineralized with lower accessibility of CaGP. This may be related to the fact, that in presence of fresh organic substrates, more CaP are formed in the outer parts of the samples at the beginning of the process, that limit ALP diffusion and allow more uniform mineralization.

Authors and Affiliations

K. Pietryga, E. Pamuła

Keywords

Related Articles

The influence of the DLC and DLC-Si coatings on the changes occurring on the implants surface during the implant-bone contact

In this study the DLC and Si-incorporated DLC layers were deposited on stainless steel alloy (AISI 316 LVM) using modified radio frequency plasma assisted chemical vapour deposition (RF PACVD) method and examined in term...

Electrochemical study of uncemented hip endoprosthesis cups

The aim of the research was to compare the properties of the new cup and the cup after alloplastic revision surgery which has been staying in the human body for 68 months. In the studies chemical composition, mechanical...

Tribological properties of resorbable polylactide-based biomaterials

The objective of this study was the observation and evaluation of tribological characteristics and behavior of biocomposites with polymer matrix under different friction conditions. Three types of polylactide composites...

Montmorillonite as a drug carrier

The use of clay minerals for medical applications dates back to prehistoric times. Specific properties of this group of minerals, their universality, low cost, ability to ion exchange, absorption capacity, inertness in c...

Montmorillonit jako nośnik leku

Zastosowanie minerałów ilastych, a w szczególności montmorillonitu, dla celów medycznych, sięga czasów prehistorycznych. Szczególne własności tej grupy minerałów, ich powszechność, niski koszt, zdolności wymiany jonowej,...

Download PDF file
  • EP ID EP538718
  • DOI -
  • Views 52
  • Downloads 0

How To Cite

K. Pietryga, E. Pamuła (2015). The influence of mineralization conditions on the effectiveness of enzymatic mineralization of hydrogels. Engineering of Biomaterials / Inżynieria Biomateriałów, 18(131), 2-7. https://europub.co.uk/articles/-A-538718