The role of 1-hexene comonomer content in thermal behavior of medium density polyethylene (MDPE) synthesized using Phillips catalyst
Journal Title: Polyolefins Journal - Year 2014, Vol 1, Issue 2
Abstract
In this work, the role of comonomer content of 1-hexene-medium density polyethylene (MDPE) copolymer, synthesized using Phillips catalyst, on thermal behavior parameters such as: crystallization, melting temperature and thermal degradation was investigated in detail. The copolymer was fractionated to homogenous short-chain branching (SCB) fractions by "preparative temperature rising elution fractionation" (P-TREF) method and then it was subjected to thermal analyses. A broad chemical composition distribution (CCD) in terms of SCB content and molecular weight (Mw) was observed by P-TREF and gel permeation chromatography (GPC), respectively. Based on P-TREF results, a parabolic relationship between methylene sequence length (MSL) and elution temperature (ET) was presented. Differential scanning calorimetry (DSC) showed distinct, well-defined melting peaks over a 22 °C temperature range for SCB contents of about 3-12 (br/1000 C). The variations in physical characteristics such as melting temperature (Tm), crystallinity (Xc), crystallization temperature (Tc) and lamellae thickness (Lc) against SCB content were correlated. Thermogravimetric analysis (TGA) suggested linear relationships between the temperature at maximum degradation rate (Tmax) as well as the degradation initiation temperature (T5%) versus SCB content. Moreover, the TGA curves exhibited distinct differences at both initiation and propagation stages of thermal degradation at dissimilar comonomer contents.
Authors and Affiliations
Abbas Kebritchi, Mehdi Nekoomanesh, Fereidoon Mohammadi, Hossein-Ali Khonakdar
Recent advances in the polymerization of butadiene over the last decade
The stereospecific polymerization of conjugated dienes began in 1954 with the first catalysts obtained by combining TiCl4 or TiCl3 with aluminum-alkyls, i.e. the catalytic systems previously employed for ethylene and pro...
Copolymerization of ethylene with α-olefins over highly active supported Ziegler-Natta catalyst with vanadium active component
The new highly active supported vanadium-magnesium catalyst (VMC) has been studied in α-olefin (1-butene, 1-hexene)/ ethylene copolymerization in the presence of hydrogen. Data on the effect of α-olefin/ethylene ratio in...
Dissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene
A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene...
Study on the fouling behavior of HDPE/PE-g-MA/EVA blend membrane fabricated via thermally induced phase separation method
In this study, neat HDPE and HDPE/PE-g-MA/EVA blend membranes were fabricated via thermally induced phase separation (TIPS) method and their fouling behaviors were examined using filtration of BSA protein. Membranes were...
Preparation and characterization of polyethylene/ glass fiber composite membrane prepared via thermally induced phase separation method
Grinded glass fiber (GGF) embedded high density polyethylene (HDPE) membranes were prepared via thermally induced phase separation method. FESEM images showed that all the membranes had leafy structure, indicating a soli...