The Tauberian theorems for the slowly variating with residual functions and their applications
Journal Title: Проблемы анализа-Issues of Analysis - Year 2012, Vol 1, Issue 1
Abstract
В статье доказываются две тауберовых теоремы для преобразования Лапласа медленно меняющихся с остатком функций и рассматриваются их приложения к суммам значений неотрицательных мультипликативных функций, связанных с проблемой Вирзинга, поставленной им в 1967 г. в работе [1].
Authors and Affiliations
B. M. Shirokov
Volume and area of intersection of a ball and an infinite parallelepiped
В статье рассматривается тело, являющиеся пересечением шара и прямого произведения квадрата на прямую (бесконечный параллелепипед), причем диаметр шара лежит на оси симметрии параллелепипеда. Вычисляются объем и площадь...
Solvability of the difference equations for the dynamics of cumulative sums
We consider the linear system of difference equations for the cumulative sum used in detecting network attacks. In the flow of events each can be dangerous with the known probability, in this case the cumulative sum is i...
Sharp estimates of products of inner radii of non-overlapping domains in the complex plane
In the paper we study a generalization of the extremal problem of geometric theory of functions of a complex variable on non-overlapping domains with free poles: Fix any γ ∈ R + and find the maximum (and describe all ext...
THE THEOREM ON EXISTENCE OF SINGULAR SOLUTIONS TO NONLINEAR EQUATIONS
The aim of this paper is to present some applications of pregularity theory to investigations of nonlinear multivalued mappings. The main result addresses to the problem of existence of solutions to nonlinear equations i...
KOEBE DOMAINS FOR THE CLASS OF TYPICALLY REAL ODD FUNCTIONS
In this paper we discuss the generalized Koebe domains for the class T^(2) and the set D ⊂ Δ = {z in C : |z| < 1}, i.e. the sets of the form T f in TM f(D). The main idea we work with is the method of the envelope. We de...