Задача управления распределенными параметрами производственной поточной линией

Journal Title: Математичне моделювання - Year 2018, Vol 1, Issue 2

Abstract

THE PROBLEM OF THE CONTROL OF THE DISTRIBUTED PARAMETERS OF THE PRODUCTION LINE Pihnastyi O.M., Kozhevnikov G.K. Abstract The program control of the flow line parameters for the transient modes of production functioning is presented. When designing the control system, a distributed model of the production line (PDE-model) is used approximation. Are given the mathematical problem of software control of the distributed parameters of the production line. A criterion for the quality of the transition process has been formulated and differential relations between the flow parameters of the production line have been determined. The constraints on control and flow parameters are defined. For the initial and boundary conditions, the goal of control of the production parameters is given. In designing the control system, the equations of differential relations are used, which are determined by the system of balance equations of a two-level model of a controlled production process. By determining the optimal program for controlling the parameters of the production line, a Fourier series expansion was used. Using the Fourier decomposition, the Pontryagin function is written for the system under study. Taking into account the restrictions on the phase coordinates (the volume of the drive between the technological operations and the limitation of the rated capacity of the process equipment), the Lagrange function is constructed. The system of equations for conjugate functions is written and the coefficients of the decomposition of the optimal control are determined in a Fourier series. Optimum control of the flow line parameters is constructed taking into account the limitations of the production system on the maximum volume of hoppers between operations and the amount of the productivity of technological equipment. Possible types of controls are identified. As a comparative analysis, a calculation was performed for an optimal control program that uses the queue model M/M/1. The main features associated with the construction of a PDE-model for managing the parameters of an industrial production line are considered. When building the optimal program for controlling the parameters of the production flow line in order to synchronize the capacity equipment of the flow line, the dependence of the control on the initial conditions is shown. References [1] Berg R. Partial differential equations in modelling and control of manufacturing systems – Netherlands, Eindhoven Univ. Technol., 2004, p. 157. [2] Forrester Dzh. Osnovy kibernetiki predprijatija, M.: Progress, 1961. – 341 p. [3] Pervozvanskij A. A. Matematicheskie metody v upravlenii proizvodstvom, M.: Nauka, 1975. – 616 p. [4] Petrov B. N. Teorii modelej v processah upravlenija (Informacionnyj i termodinamicheskij aspekty),M.: Nauka, 1978. – p. 224. [5] Razumov I. M. Organizacija i planirovanie mashinostroitel'nogo proizvodstva, M.: Mashinostroenie, 1974. – p. 592. [6] Sokolicyn S. A. Primenenie matematicheskih metodov v jekonomike i organizacii mashinostroitel'nogo proizvodstva, L.: Mashinostroenie, 1970. – p. 345. [7] E. D. Voronina Upravlenie gibkimi proizvodstvennymi sistemami. Modeli i algoritmy, obshh. red. S. V. Emel'janov, M.:Mashinostroenie, 1987. – p. 368. [8] Shkurba V. V. & V.V. Shkurba Planirovanie diskretnogo proizvodstva v uslovijah ASU, K.: Tehnika, 1975. – p. 296, p. 6. [9] Lefeber E. Modeling, Validation and Control of Manufacturing Systems., Proceeding of the 2004 American Control Conference, Massachusetts, 2004. – p. 4583–4588. [10] Lefeber E. Controlling a re-entrant manufacturing line via the push-pull point., International Journal of Production Research 46(16), 2008. – p. 4521–4536. [11] Mac Gregor S.J. Handbook of Stochastic Models and Analysis of Manufacturing System Operations.,New York, 2013. –Vol. 192, p. 373. [12] Pihnastyi O.M. Statistical theory of production systems, Kharkіv: KhNU, 2007, p. 388 doi: 10.13140/RG.2.2.18903.78244 [13] Krasovskij A. A. Fazovoe prostranstvo i statisticheskaja teorija dinamicheskih sistem, M.: Nauka,1974, p. 232. [14] V. S. Teorija upravlenija, K: Vyshha Shkola, 1988, p. 312. [15] Moiseev N. N. Jelementy teorii optimal'nyh sistem, M.: Nauka, 1974, p. 526. [16] Pontrjagin L. S. Matematicheskaja teorija optimal'nyh processov, M.: Nauka, Gl. red. fiz.-mat. Lit., 1983, p. 392. [17] Pugachev V. S. Osnovy statisticheskoj teorii avtomaticheskih sistem, M.: Mashinostroenie, 1974, p. 400. [18] Pihnastyi O. M. The calculation of a production cycle with application of the statistical theory of industrial-technical systems, Reports of the National Academy of Sciences of Ukraine – 2009, vol.12, pp. 38 – 44. doi: 10.13140/RG.2.2.36267.54562 [19] Bellman R. Teorija ustojchivosti reshenij differencial'nyh uravnenij, M.: Izdatel'stvo inostrannoj literatury, 1954. – p. 215. [20] Kazakov I. E. Statisticheskaja teorija sistem upravlenija v prostranstve sostojanij, M.: Nauka, 1975, p. 432. [21] Armbruster D. Kinetic and fluid model hierarchies for supply chains supporting policy attributes, Bulletin of the Institute of Mathematics. – Academica Sinica, 2006, pp. 496–521. [22] Ramadge P. The control of discrete event systems, Proceedings of the IEEE vol. 77, № 1., 1989, pp. 81–98. [23] Harrison J. Brownian Motion and Stochastic Flow Systems.,New York,1995. – p. 142. [24] Demutsky, V.P. Pihnastaja, V.S. Pihnastyi, O.M. 2003. Theory of the enterprise: the stability of the functioning of mass production and promotion of products on the market. Kharkov.:KhNU, p.272. doi: 10.13140/RG.2.1.5018.7123. (in Russian) [25] Armbruster D. Continuous models for production flows., In Proceedings of the 2004 American Control Conference. – Boston, MA, USA. 2004, pp. 4589–4594. [26] Zaruba V. Ja. Jentropija tehnologicheskogo processa, [Upravlenie bol'shimi sistemami: trudy mezhdunarodnoj nauchno-prakticheskoj konferencii] “Teorija aktivnyh sistem” (TAS2011),. – Moskva: IPU RAN. – 2011. – Tom. 2. – pp 145 – 148. (In Russian)1 [27] Serebrennikov G. G. Organizacija proizvodstva, Tambov: Izd. TGTU, 2004. – p. 96. [28] Sinica L. M. Organizacija proizvodstva / L. M. Sinica. – Mn.: UP IVC Minfin, 2003. – 512 p. [29] Tian F. An iterative approach to item-level tactical production and inventory planning. / F.Tian, S.P.Willems, K.G.Kempf –International Journal of Production Economics, 2011. – vol. 133. – P. 439–450. [30] Ljapilin I. I. Vvedenie v teoriju kineticheskih uravnenij, Ekaterinburg: UGTU-UPI, 2003,p. 205. [31] Pihnastyi O.M. Using PDE-models for a unified theory of production lines., Bulletin of the Kherson National Technical University. Kherson: KhNTU. – 2014 – No. 3 (50). – pp. 405–412. doi: 10.13140/RG.2.2.15769.52326 [32] Pihnastyi O.M. The construction of the target function of the production system, Reports of the National Academy of Sciences of Ukraine, 2006, pp. 79–85. doi: 10.13140/RG.2.2.11808.28161 [33] Fel'dbaum A. A. Metody teorii avtomaticheskogo upravlenija: nauchnoe izdanie, M.: Nauka, 1971, 744 p. [34] Lysenko Ju. G. Modelirovanie tehnologicheskoj gibkosti proizvodstvenno-jekonomicheskih sistem,Doneck: DonNU, 2007, p. 238. [35] Pihnastyi O.M. Multi-moventsflowmodelproductionline, Mathematical modeling. – Dneprodzerzhinsk: DSTU. 2017. – № 1. – pp. 81–87. doi: 10.13140/RG.2.2.19038.13128 [36] Pihnastyi O.M. The task of optimal operational control of macroparameters of a production system with mass production, Dopovіdі Nacіonal'noї akademії nauk Ukraїni. – Kiїv: Vidavnichij dіm "Akademperіodika". 2006, № 5 – pp. 79–85. doi: 10.13140/RG.2.2.29852.28802 [37] Karcheva G. Problemi і perspektivi rozvitku bankіvs'koї sistemi Ukraїni: zb. nauk. pr. /NBU; Mіn-vo osvіti і nauki Ukraїni. – Sumi, 2009. – T. 26. – pp. 200–206. https://goo.gl/3HcT8P (accessed 14.05.2009) [38] Pihnastyi OM. Overview of models of controlled production processes of production line production lines, Scientific bulletins of the Belgorod State University. Belgorod: BSU. – 2015. – No. 34/1. P.137–152, doi: 10.15407/dopovidi2014.12.036 [39] Lur'e K. A. Optimal'noe upravlenie v zadachah matematicheskoj fiziki, M.: Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, 1975, p. 480. [40] Armbruster D. A continuous model for supply chains with nit buffers, SIAM Journal on Applied Mathematics, 2011, pp. 855–877. [41] Klejner G. B. Proizvodstvennye funkcii: Teorija, metody, primenenie, M.: Finansy i statistika, 1986, p. 239. [42] Val'ko V. I. Variacionnoe ischislenie i optimal'noe upravlenie, M.:MVTU im.Baumana, 2006, p. 488. [43] Jel'sgol'c L. Je. Differencial'nye uravnenija i variacionnoe ischislenie, M.: Nauka, 1969, p. 425. [44] Lavrent'ev M. Osnovy variacionnogo ischislenija, M.: Izd-vo NKTP SSSR, 1935. – Tom 2, p. 399. [45] Armbruster D. Kinetic and fluid model hierarchies for supply chains, SIAM Multiscale Model Simul. – 2004. – vol. 2 № 1, pp. 43–61.

Authors and Affiliations

О. М. Пигнастый, Г. К. Кожевников

Keywords

Related Articles

Математичне моделювання формування сил різання при розрізанні автомобільних пневматичних шин навпіл

MATHEMATICAL MODELING FORMATION OF FORCES OF CUTTING TO CUT IN HALF AUTOMOBILE PNEUMATIC TIRES Sasov O.O., Korobochka O.M., Volosova N.M. Abstract The resulting mathematical model of the formation of cutting forces in...

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ СТУПЕНІ ЗНОСУ ПОВЕРХНЕВОГО ШАРУ ДЕТАЛЕЙ В ЗАЛЕЖНОСТІ ВІД РЕЖИМІВ НАВАНТАЖЕННЯ

MATHEMATICAL MODELING OF STEPS OF THE SURFACE LOAD OF DETAILS IN DEPENDENCE FROM LOAD MODES Chernet O.G., Sukhomlin V.I., Voloshchuk R.G. Abstract Methods of obtaining wear-resistant coatings are considered in this wor...

ЗАСТОСУВАННЯ ЕКОНОМІКО-МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ ДЛЯ ВИЗНАЧЕННЯ ЗАЛЕЖНОСТІ ФІНАНСОВИХ РЕЗУЛЬТАТІВ БАНКУ ВІД ЕКОНОМІЧНОГО ЗРОСТАННЯ

APPLICATION OF ECONOMIC-MATHEMATICAL SIMULATION FOR DEFINING FINANCIAL RESULTS OF THE BANK FROM ECONOMIC GROWTH Yudina S.V., Ganzyuk S.M., Borovets I.S. In the article the importance of mathematical modeling for solvin...

Двовимірна математична модель теплофізичних процесів, які протікають при отриманні листової заготовки за допомогою валків-кристалізаторів

THE TWO-DIMENSIONAL MATHEMATICAL MODEL OF THERMAL PROCESSES THAT OCCUR DURING ROTATION OF THE ROLL-MOLD IN A CONTINUOUS CASTING PROCESS Sokol A.M. Abstract Formulation of the problem The priority of Ukrainian metallurgy...

Керування наближеним розв'язком диференціальних рівнянь з розривними коефіцієнтами

ON CONTROL OF THE APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS COEFFICIENTS Dronov S.G. This study presents an algorithm for approximate solving of a marginal problem for the common second- order li...

Download PDF file
  • EP ID EP444746
  • DOI 10.31319/2519-8106.2(39)2018.154231
  • Views 82
  • Downloads 0

How To Cite

О. М. Пигнастый, Г. К. Кожевников (2018). Задача управления распределенными параметрами производственной поточной линией. Математичне моделювання, 1(2), 119-134. https://europub.co.uk/articles/-A-444746