Алгоритмічне забезпечення методу прогнозування обсягів споживання електроенергії з використанням рекурентної нейронної мережі

Journal Title: Математичне моделювання - Year 2017, Vol 1, Issue 1

Abstract

ALGORITHMIC PROVIDING OF THE METHOD FOR FORECASTING OF THE ELECTRICITY CONSUMPTION VOLUME WITH THE USE OF A RECURRENT NEURAL NETWORK Kosukhina O., Tonkonog S.E. Abstract The urgency of the topic of this work lies in the fact that the prediction of electric load is one of the main parameters that determine the mode of power systems operation. The forecasting errors necessarily lead to unreasonable costs in the energy sector. This is due to the fact that the reassessment of future consumption leads to unreasonable over-consumption of all types fuels, and its underestimation to a decrease in the quality of energy supply to consumers. The purpose of this work is to improve the quality of the forecast of hourly electricity consumption by developing algorithmic and software method using recurrent neural network. The following tasks were set in the work: - to analyze the existing methods of time series forecasting; - to construct the algorithm and software of the forecasting method using the recurrent neural network; - apply the developed algorithmic and software for forecasting of hourly electricity consumption. As a result of the work, the algorithmic and software of the method of forecasting of time series using the recurrent neural network was developed. The developed software was used to forecast hourly electricity consumption. It is proved that the prediction error is valid and does not exceed the error of studying. References [1] Tzafestas S. Computational intelligence techniques for short-term electric load forecasting / S. Tzafestas, E. Tzafestas // Journal of Intelligent and Robotic Systems. – 2001. – 31. – P. 7–68. [2] Mandic D.P. Recurrent Neural Networks for Prediction/ D.P. Mandic, J.A. Chambers. – Chichester: John Wiley&Sons, 2001. – 285 p. [3] Williams R.J. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks / R.J. Williams,D. Zipser // Neural Computation. – 1989. – 1. – P. 270–280. [4] Elman J.L. Finding structure in time / J.L. Elman //Cognitive Science. – 1990. – 14. – P. 179–211. [5] Jordan M. Constrained supervised learning /M. Jordan // Journal of Mathematical Psychology. – 1992. – 36. – P. 396–452. [6] Vikko N., Lautala, P. Short-term electric power production scheduling using simulated annealing algorithm: Proc. of the IASTED Inter. Sym / N. Vikko, P. Lautala // ACTA Press, Anaheim, CA, USA, 1990. [7] Chumachenko Е. I. Algorithm for solving the problem of forecasting / Е. I. Chumachenko, V. S. Horbatuk // Artificial Intelligence. – 2012. – № 2. – p.p. 24–30 (in Russian).

Authors and Affiliations

О. С. Косухіна, С. Є. Тонконог

Keywords

Related Articles

Аbout limitations on similarity modelling of chemical-technological processes

ПРО ОБМЕЖЕННЯ НА МОДЕЛЮВАННЯ ПО ПОДІБНОСТІ ХІМІКО-ТЕХНОЛОГІЧНИХ ПРОЦЕСІВ Барський В.Д., Кравченко О.В., Гуляєв В.М., Яковлєв-Барський Д.В. Реферат Не зважаючи на велику кількість робіт в галузі моделювання по подібност...

Оптимізація роботи металургійного підприємства шляхом аналізу експлуатаційних показників роботи кар’єрних самоскидів

OPTIMIZATION OF THE WORKOF METALLURGICAL ENTERPRISES BY ANALYZING OPERATIONAL PARAMETERS OF THE WORK OF DUMPTRUCKS Sereda B.P., Mukovska D.Y. Abstract In the article a comparative analysis of the spatial performance in...

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПРОЦЕСУ РОЗСІЮВАННЯ ВИКИДІВ ВІД ПОСТІЙНО ДІЮЧОГО СТАЦІОНАРНОГО ДЖЕРЕЛА ЗАБРУДНЕННЯ

MATHEMATICAL MODELING OF DISPERSION PROCESS OF EMISSIONS FROM CONSTANTLY OPERATING STATIONARY SOURCE OF POLLUTION Biliaiev M.М., Rusakova T.I. Abstract The processes of extraction and processing of ironstone are accompa...

Математическая модель напряженно-деформированного состояния реторт в процессе восстановления тетрахлорида титана

MATHEMATICAL MODEL OF STRESS-STRAIN STATE OF THE RETORT IN THE REDUCTION PROCESS OF TITANIUM TETRACHLORIDE Evseeva N.O., Mishchenko V.G., Bagriichuk O.S. Abstract Global titanium sponge manufacturers face a serious prob...

Моделирование процесса саморегулирования при прокатке в проволочном блоке стана 400/200 ПАО «ДМК»

THE MODELING THE PROCESS OF SELF-REGULATION DURING ROLLING IN A WIRE BLOCK OF A MILL 400/200 PJSC «DMK» Maksimenko O.P., Kuzmin E.V., Loboiko D.I., Lysak V.O. Abstract The work is relevant, because is aimed at reducing...

Download PDF file
  • EP ID EP277094
  • DOI -
  • Views 51
  • Downloads 0

How To Cite

О. С. Косухіна, С. Є. Тонконог (2017). Алгоритмічне забезпечення методу прогнозування обсягів споживання електроенергії з використанням рекурентної нейронної мережі. Математичне моделювання, 1(1), 11-16. https://europub.co.uk/articles/-A-277094