A lower bound for the L_2[-1,1]-norm of the logarithmic derivative of polynomials with zeros on the unit circle

Journal Title: Проблемы анализа-Issues of Analysis - Year 2019, Vol 8, Issue 2

Abstract

Let C be the unit circle {z:|z|= 1} and Qn(z) bean arbitrary C-polynomial (i. e., all its zeros z1, . . ., zn ∈ C). We prove that the norm of the logarithmic derivative Q′n/Qn in the complex space L2[−1,1] is greater than 1/8.

Authors and Affiliations

M . A . Komarov

Keywords

Related Articles

THE GENERALIZED KOEBE FUNCTION

We observe that the extremal function for |a 3| within the class U' α (see Starkov [1]) has as well the property that max|A 4|>4.15, if α=2. The problem is equivalent to the global estimate for Meixner-Pollaczek polynomi...

Growth theorems on classes of normalized locally quasiconformal mappings

В классах локально-квазиконформных нормированных автоморфизмов f единичного круга Δ с заданной мажорантой характеристики М. А. Лаврентьева получены асимптотически точные оценки |f(z)|, родственные классическому неравенст...

QUASI-ISOMETRIC MAPPINGS AND THE P-MODULI OF PATH FAMILIES

In this article, we study a connection between quasiisometric mappings of n-dimensional domains and the p-moduli of path families. In particular, we obtain explicit (and sharp) estimates for the distortion of the p-modul...

ON CHARACTERIZATIONS OF MAIN PARTS OF SOME MEROMORPHIC CLASSES OF AREA NEVANLINNA TYPE IN THE UNIT DISK

We characterize main parts of Loran expansions of certain meromorphic spaces in the unit disk defined with the help of Nevanlinna characteristic.

Download PDF file
  • EP ID EP593212
  • DOI 10.15393/j3.art.2019.6030
  • Views 119
  • Downloads 0

How To Cite

M . A . Komarov (2019). A lower bound for the L_2[-1,1]-norm of the logarithmic derivative of polynomials with zeros on the unit circle. Проблемы анализа-Issues of Analysis, 8(2), 67-72. https://europub.co.uk/articles/-A-593212