A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 2

Abstract

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent. Material and Methods: Iron oxide–4A nanocomposite (F4A) was synthesized. MTT assay was used to consider the nanocomposite safety for cell culture. The T1 and T2 relaxation times were measured using a 1.5 Tesla clinical MRI scanner. Then the corresponding relaxivities were determined. Results: The average particle diameter of the nanocomposite was 50 to 100 nm based on scanning electron microscope (SEM) image. A linear relationship between relaxation rates and the Fe concentration of the nanocomposite was obtained. The T1 and T2 relaxivities of the nanocomposite were calculated 5.413 and 1092.1 mM-1.s-1, respectively which led to the T2/T1 relaxivity ratio of 201.75. Conclusion: The high T2/T1 relaxivity ratio of the iron oxide–4A nanocomposite confirms it’s potential to act as a T2 contrast agent.

Authors and Affiliations

N. Gharehaghaji, L. Zareei, B. Divband, A. Mesbahi, M. Khatamian

Keywords

Related Articles

Manipulation Effect on Lumbar Kinematics in Patients with Unilateral Innominate Rotation and Comparison with Asymptomatic Subjects

Background: Lumbar motion analysis is used as a clinical method in the diagnosis and treatment of low back pain (LBP). So far, no studies have shown if manipulating the sacroiliac joint (SIJ) will change spinal kinematic...

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as...

Monte Carlo Study of Unflattened Photon Beams Shaped by Multileaf Collimator

Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams. Materials and Methods: Monte Carlo simulat...

Alzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation

In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievab...

Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions

Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize b...

Download PDF file
  • EP ID EP613511
  • DOI -
  • Views 98
  • Downloads 0

How To Cite

N. Gharehaghaji, L. Zareei, B. Divband, A. Mesbahi, M. Khatamian (2019). A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite. Journal of Biomedical Physics and Engineering, 9(2), 211-216. https://europub.co.uk/articles/-A-613511